1
|
Wang R, Chen J, Chen H. Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137350. [PMID: 39874761 DOI: 10.1016/j.jhazmat.2025.137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.3 %-61.1 %) and maximum power density (14 %-106 %) of SMFCs, while also reducing ARB abundance and transmission risk. The enhancement effect follows the order of biochar, nanoscale zero-valent iron, graphene, and carbon nanotubes, with biochar emerging as the most economical and efficient choice for generating electricity and removing human pathogenic bacteria carrying ARGs. Procrustes analysis revealed that electron mediators facilitated the removal of ARGs by altering the structure of the microbiome, particularly the electricity-generating microorganisms (EGMs). Voltage and mobile genetic elements were the primary drivers of ARGs in the SMFCs. The network analysis results show that multiple carbohydrate-active enzymes, cluster of orthologous groups, and EGMs were negatively correlated with ARGs, indicating that the electron mediator-enhanced SMFCs mainly inhibit the spread of ARGs by promoting cell division, carbohydrate metabolism, and electricity generation. This study provides novel insights into how electron mediators affect ARG removal in microbial electrochemistry, which can inform economically viable strategies for sustainable environmental remediation.
Collapse
Affiliation(s)
- Rui Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jinping Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
2
|
Zhou M, Cao J, Guo J, Wang Y, Lu Y, Zhu L, Hu L, Liu W, Li C. Mechanisms and mitigation control of clogging in constructed wetlands: Insight into the enhancement of the bioelectrochemical systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124809. [PMID: 40049013 DOI: 10.1016/j.jenvman.2025.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Constructed wetlands (CWs), a cost-effective and eco-friendly wastewater treatment technology, are extensively applied in various types of wastewater treatment. There is a series of strong impacts on CWs performance by the accumulation of clogging matters which attribute to physical, chemical, and biological processes after the long-term operation. This paper summarizes the mechanism of clogging formation, which can be classified into physical, chemical, and biological clogging. Moreover, it analyzes the typical measures for preventing and controlling clogging in CWs. The integration of bioelectrochemical systems (BES), including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) into CWs is proposed as a safe and efficient way to alleviate substrate clogging on-site, owing to the fact that BES can easily automate the control or adjustment of its internal electric field form. The mechanism of clogging control by CW-BES is comprehensively described and analyzed. With the help of BES, the clogging substances obtained optimized occurrence form, reduced hydrophobicity and advantageous spatial distribution. Besides, the microbial community achieved promoted structure, accelerated rates of electron transfer and more diverse metabolic pathway. Compared to traditional methods for evaluating the clogging of CWs, the MFC sensor offers the advantages of being fast, enabling in-site detection, and being non-destructive. Future research should be focused on the theoretical underpinnings for putting CW-BES into practical use. Additional, efforts should be made to ensure the stable, long-term operation of CWs.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jinyan Guo
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Li Hu
- College of Biology and Food Engineering, Huanghuai University, 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
3
|
Chicaiza-Ortiz C, Zhang P, Zhang J, Zhang T, Yang Q, He Y. CO₂-enhanced methane production by integration of bamboo biochar during anaerobic co-digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123603. [PMID: 39642842 DOI: 10.1016/j.jenvman.2024.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the enhancement of methane production in anaerobic co-digestion (AcoD) through the introduction of exogenous CO₂ and the application of bamboo biochar. Exogenous CO₂ boosts biogas yield by providing an additional carbon source, which requires optimized solubility and pH buffering to ensure effective methanation. Biochar serves as an electron shuttle and pH stabilizer, facilitating CO2 solubility and syntrophic interactions that enhance microbial stability. When combined, biochar and CO₂ (R2) achieved a significant synergistic effect, increasing specific methane production (SMP) by 42.56% compared to the control (R0). Independent additions of biochar (R1) and CO₂ (R3) also improved SMP, with increases of 35.50% and 28.01%, respectively. This enhancement is likely due to the elevated activity of homoacetogenic bacteria and hydrogenotrophic methanogens, with increased acsB gene expression 2.4-fold with biochar + CO₂ and 1.5-fold with CO₂ alone compared to the control. Additionally, biochar facilitated syntrophic metabolism mediated by Cytochrome-C, promoting electron transfer. The study also demonstrated that biochar and CO2 could enhance enzyme activity, including acetyl-CoA synthase, mhpF, and mhpE. Such improvements bolster AcoD efficiency and promote resource recycling within the circular economy framework.
Collapse
Affiliation(s)
- Cristhian Chicaiza-Ortiz
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass to Resources Group, Universidad Regional Amazónica IKIAM, Tena, Napo, 150150, Ecuador.
| | - Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Tengyu Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qing Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Shi X, Liang Y, Wen G, Evlashin SA, Fedorov FS, Ma X, Feng Y, Zheng J, Wang Y, Shi J, Liu Y, Zhu W, Guo P, Kim BH. Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174332. [PMID: 38950630 DOI: 10.1016/j.scitotenv.2024.174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutong Liang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Xinyue Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junjie Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yixing Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd, Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Byung Hong Kim
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Korea Institute of Science & Technology, Seongbug-ku, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Lan R, Liu L, Feng H, Chen BY, Shi X, Hong J. Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection. BIORESOURCE TECHNOLOGY 2024; 403:130883. [PMID: 38788807 DOI: 10.1016/j.biortech.2024.130883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2-15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.
Collapse
Affiliation(s)
- Ruisong Lan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361102, China
| | - Han Feng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, 26047, Taiwan
| | - Xiuding Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
6
|
Ping J, Liu J, Dong Y, Song W, Xie L, Song H. Biochar inoculated with Rhodococcus biphenylivorans altered microecological regulation by promoting quorum sensing and electron transfer: Up-regulation of related genes and enhancement of phenol and ammonia degradation. BIORESOURCE TECHNOLOGY 2024; 397:130498. [PMID: 38432542 DOI: 10.1016/j.biortech.2024.130498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Bioaugmentation is an efficient method for improving the efficiency of coking wastewater removal. Nevertheless, how different immobilization approaches affect the efficiency of bioaugmentation remains unclear, as does the corresponding mechanism. With the assistance of immobilized bioaugmentation strain Rhodococcus biphenylivorans B403, the removal of synthetic coking wastewater was investigated (drying agent, alginate agent, and absorption agent). The reactor containing the absorption agent exhibited the highest average removal efficiency of phenol (99.74 %), chemical oxygen demand (93.09 %), and NH4+-N (98.18 %). Compared to other agents, the covered extracellular polymeric substance on the absorption agent surface enhanced electron transfer and quorum sensing, and the promoted quorum sensing benefited the activated sludge stability and microbial regulation. The phytotoxicity test revealed that the wastewater's toxicity was greatly decreased in the reactor with the absorption agent, especially under high phenol concentrations. These findings showed that the absorption agent was the most suitable for wastewater treatment bioaugmentation.
Collapse
Affiliation(s)
- Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; School of Life Science, Hubei University, Wuhan 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Wenxuan Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan 430062, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Wu X, Zhao X, Wu W, Hou J, Zhang W, Tang DKH, Zhang X, Yang G, Zhang Z, Yao Y, Li R. Biotic and abiotic effects of manganese salt and apple branch biochar co-application on humification in the co-composting of hog manure and sawdust. CHEMICAL ENGINEERING JOURNAL 2024; 482:149077. [DOI: 10.1016/j.cej.2024.149077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|