1
|
Zhu D, Feng Z, He B, Li J, Zhu DZ, Xiong J, Yao Z. Keystone bacterial groups dominate Escherichia coli O157:H7 survival in long-term reclaimed water headwater stream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125738. [PMID: 39855455 DOI: 10.1016/j.envpol.2025.125738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Escherichia coli (E. coli) O157:H7 is a highly pathogenic zoonotic bacterium, with water serving as a key medium for its environmental transmission. However, the survival characteristics of E. coli O157:H7 in reclaimed water environments remain poorly understood, which has, to some extent, hindered the development of water reuse technologies. This study examined the survival dynamics of E. coli O157:H7 in a long-term reclaimed water headwater stream through inoculation experiments and identified its main drivers. The results showed that the survival time of E. coli O157:H7 was the longest in the headwater upstream (up to 62 days), gradually decreased as it flowed downstream. Among physicochemical factors, chloride ion, potential of hydrogen, and electrical conductivity were the main factors affecting the survival of E. coli O157:H7. The microbial diversity shown by the alpha diversity index had no significant impact on the E. coli O157:H7 survival. Meanwhile, certain keystone bacterial groups, such as Polynucleobacter, Roseomonas, and Luteolibacter, which are primarily involved in the decomposition of organic matter, suppressed E. coli O157:H7 survival in this stream, while Nitrospira, Dechloromonas, and Sphingomonas promoted the survival of E. coli O157:H7. Overall, the biotic factors have a more direct impact on the E. coli O157:H7 survival compared to abiotic factors in the reclaimed water-replenished stream and deserve more attention. Our research revealed higher biological risks in the upstream sections of the long-term reclaimed water headwater stream, which helped deepen our understanding of pathogen survival in water environments and enhancing our awareness of the biological safety of reclaimed water in ecological replenishment processes.
Collapse
Affiliation(s)
- Di Zhu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Zhangheng Feng
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Bin He
- Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jinyi Li
- Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jinbo Xiong
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Zhiyuan Yao
- Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Duan Z, Huang K, Huang W, Wang B, Shi J, Xia H, Li F. Bacterial dispersal enhances the elimination of active fecal coliforms during vermicomposting of fruit and vegetable wastes: The overlooked role of earthworm mucus. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134280. [PMID: 38636233 DOI: 10.1016/j.jhazmat.2024.134280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.
Collapse
Affiliation(s)
- Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Wenqi Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bangchi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiwei Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|