1
|
Lyu X, Ai Z, Huang W, Huang W, Lei Z, Yuan T, Utsumi M, Lee DJ. A review on recent advancement in algal-bacterial aerobic granular sludge: From inoculation approaches to operation strategies. Biotechnol Adv 2025; 83:108610. [PMID: 40403940 DOI: 10.1016/j.biotechadv.2025.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/27/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
In recent years, the environmental unsustainability of traditional wastewater treatment processes, alongside the growing emphasis on carbon neutrality and self-sufficiency in wastewater treatment plants (WWTPs), has drawn attention to algal-bacterial aerobic granular sludge (AGS) systems. This review synthesizes recent advances in algal-bacterial AGS, focusing on the latest research on its granulation mechanisms under both hydrostatic and hydrodynamic conditions and providing a comprehensive overview of cultivation strategies based on various sludges. We discuss the latest reports on the impacts of process operation strategies for algal-bacterial AGS and emphasize the operation performance and design of different bioreactor configurations. Challenges for commercialization and sustainable applications are highlighted; future application directions are also posted. In summary, algal-bacterial AGS exhibits significant potential in simultaneous efficient wastewater treatment and bioresource recovery, targeting circular bioeconomy and sustainable wastewater industry.
Collapse
Affiliation(s)
- Xinyu Lyu
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziyin Ai
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Renmin Road, Haikou 570228, China
| | - Zhongfang Lei
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoo Utsumi
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China
| |
Collapse
|
2
|
Veerabadhran M, Chen L, Lens PNL, Nancharaiah YV. Algal-bacterial granules for circular bioeconomy: Formation mechanisms and biotechnological applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125393. [PMID: 40250180 DOI: 10.1016/j.jenvman.2025.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Cyanobacteria and microalgae are sustainable and renewable biocatalysts for solar energy harvesting, recovering nutrients from wastewater, reducing greenhouse gas emissions from wastewater treatment plants (WWTPs) and enable creation of a sustainable circular bioeconomy. Pure and axenic cultures of photosynthetic microorganisms have been widely studied for synthesizing bio-based products through improving the metabolic pathways via genetic engineering. However, pure cultures suffer from contamination and separation challenges when considered for environmental applications. Mixed microbial communities comprising of photosynthetic organisms and bacteria in the form of either flocs or granules have recently received a lot of attention due to their potential contribution to wastewater treatment, environmental sustainability and circular bioeconomy. The advantages of algal-bacterial granules (ABG) in WWTPs include effective elimination of contaminants and nutrients, reduction in aeration requirement, and production of biomass feedstock for downstream processing. Although ABG are an attractive option for energy positive wastewater treatment, it is not yet matured as technological option for deployment in full-scale WWTPs. Moreover, several aspects of ABG including synergistic metabolism, granulation mechanisms, granular stability, bioreactor operating conditions, cell-cell interactions, extracellular polymeric substances and bio-based products deserve more intense research. This article provides a detailed overview of algal-bacterial communities, their occurrence in natural environments, ABG cultivation in engineered settings, potential biotechnological applications and the recent progress made towards sustainable biological wastewater treatment and circular bioeconomy.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China
| | - Lin Chen
- Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China.
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Westvest 7, the Netherlands
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
3
|
Zhang Y, Ai S, Chen X, Zhao Y, Zhang Y, Wu C, Ma C, Tang Z, Yu D, Yao C, Ge B. The accumulation and inhibition mechanism of extracellular polymeric substances of Chlorella vulgaris during cycling cultivation under different light qualities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123176. [PMID: 39500171 DOI: 10.1016/j.jenvman.2024.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
The secretion, accumulation, and composition of extracellular polymeric substances (EPS) are pivotal factors influencing microalgal growth as well as wastewater recycling. Until now, the accumulation and inhibition mechanism of EPS of Chlorella vulgaris during cycling cultivation is not fully understood. The purpose of this study was to explore how different light qualities regulate the secretion, chemical composition, and structure of microalgal EPS, and subsequently influence the recycling of culture wastewater. After four cycles of cultivation, C. vulgaris under green light produced the highest EPS production and lowest biomass production, which were 82% higher and 17% lower, respectively, compared to white light, which yielded the least EPS production and the highest biomass production. EPS under different light qualities all exhibited a fibrillar structure with a sheet-like surface, but differed in composition. Compared with the other groups, EPS under green light showed a significant increase in polysaccharides, proteins, and humic acid-like compounds, as well as an increased proportion of arabinose and rhamnose, according to monosaccharide composition analysis. Transcriptome analysis indicated that the up-regulation of metabolic pathways linked to glycolysis/gluconeogenesis, TCA cycle, lipid synthesis, and ABC transporters promoted EPS accumulation. Additionally, EPS could target light-harvesting complex (LHC) and electron transport chain, down-regulating the photosynthetic pathway, which ultimately inhibited microalgal growth under green light. This study provides a theoretical foundation for the light regulation and circulation culture of microalgae, as well as for microalgal wastewater treatment.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Sihan Ai
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xue Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yabin Zhao
- College of Life Science, Yantai University, Yantai, 264003, PR China
| | - Yuxuan Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chenxi Wu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chen Ma
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Zhihong Tang
- College of Life Science, Yantai University, Yantai, 264003, PR China.
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chaonan Yao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
4
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zhao C, Jiao T, Zhang W, Zhang W, Jia M, Liu S, Zhang M, Han F, Han Y, Lei J, Wang X, Zhou W. Nutrients recovery by coupled bioreactor of heterotrophic ammonia assimilation and microbial fuel cell in saline wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170697. [PMID: 38331272 DOI: 10.1016/j.scitotenv.2024.170697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Heterotrophic ammonia assimilation (HAA) process had been widely used in the treatment of high salt wastewater, but the electro enhanced coupling process and electron transfer process were rarely studied. In this study, a HAA process coupled microbial fuel cell (MFC) system was established to treat ammonia-containing wastewater under increasing salinity to achieve nitrogen recovery and electricity generation. Up to 95.4 % NH4+-N and 96.4 % COD removal efficiencies were achieved at 2 % salinity in HAA-MFC. The maximum power density and current density at 2 % salinity were 29.93 mW/m2 and 182.37 mA/m2, respectively. The residual organic matter in the cathode effluent was effectively removed by the anode. The increase of salinity not only enhanced the sludge settling performance and activity, but also promoted the enzyme activity and amino acid production of the ammonia assimilation pathway. Marinobacter and Halomonas were gradually enriched at the anode and cathode with increased salinity to promote ammonia assimilation and electron production. This research offered a promising solution to overcome salinity-related challenges in wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Tong Jiao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Wenhao Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Wenchao Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Man Jia
- Shandong Provincial Eco-Environment Monitoring Center, Jinan, Shandong, PR China
| | - Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Yufei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Jianhua Lei
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China
| | - Xianfeng Wang
- Shandong Provincial Eco-Environment Monitoring Center, Jinan, Shandong, PR China.
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China.
| |
Collapse
|
6
|
Li Z, Wang Z, Cai S, Lin L, Huang G, Hu Z, Jin W, Zheng Y. Effects of light intensity and salinity on formation and performance of microalgal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2023; 386:129534. [PMID: 37488013 DOI: 10.1016/j.biortech.2023.129534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Photosynthetic microorganisms in microalgal-bacterial granular sludge offer advantages in wastewater treatment processes. This study examined the effects of light intensity and salinity on microalgal-bacterial granular sludge formation and microbial changes. Activated sludge was inoculated into three bioreactors and operated in batch treatment mode for 100 days under different light intensities (0, 60, and 120 μmol m-2 s-1) and staged increases in salinity concentration (0, 1, 2, and 3%). Results showed that microalgal-bacterial granular sludge was successfully formed within 30 days, and high light exposure increased algal particle stability and inorganic nitrogen removal (63, 66, 71%), while chemical oxygen demand removal (>95%) was similar across groups. High-throughput sequencing results showed that the critical algae were Chlorella and diatoms, while the main bacteria included Paracoccus and Xanthomarina with high extracellular polymeric substance production. This study aims to enhance the comprehension of MBGS processes in saline wastewater treatment under varying light intensities.
Collapse
Affiliation(s)
- Ze Li
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Si Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langli Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guanqin Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yihong Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|