1
|
Bhatia SK, Gurav R, Yang YH. A review on waste activated sludge pretreatment for improved volatile fatty acids production and their upcycling into polyhydroxyalkanoates. Int J Biol Macromol 2025; 308:142562. [PMID: 40154714 DOI: 10.1016/j.ijbiomac.2025.142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Waste activated sludge (WAS), a byproduct of wastewater treatment (WWTPs) facilities is challenging to manage because of its high organic content. Most of WAS is managed via anaerobic digestion (AD) to produce biogas, which is not deemed economically viable. The AD of WAS into volatile fatty acids (VFA) and their subsequent upcycling into polyhydroxyalkanoates (PHA) is gaining popularity due to their high value and uses. However, the fundamental issue with WAS is its low solubility, and pretreatment is required to increase it. Pretreatment disintegrates sludge floc and enhances its solubility, supports acetogens, and inhibits methanogens, leading to increased VFA synthesis in the AD process. The key factors influencing VFA yield include the size of the sludge granules, the mixing rate, and the presence of resistant organic components. Fermented broth containing VFA from AD can be utilized directly as a feedstock for microbial fermentation to produce PHA using both pure as well as mixed cultures. Utilisation of mixed cultures is useful since they are robust, able to consume a wide range of substrates, and do not require sterility. In addition, the VFA, which is made up of various organic acids, impacts the structure, productivity, characteristics, and type of PHA produced by microbial communities. Considering the importance of WAS management through VFA production and its integration with PHA production process this review article discusses the WAS pretreatment strategies, various factors that influence the AD process, trends in VFA to PHA production technologies with challenges, and possible solutions for integrated process development.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Liu Y, Sun J, Zhao T, Wang L, Zhao C, Fu J, Li D, Yu H. Effects of Fe/Mg-modified lignocellulosic biochar on in vitro ruminal microorganism fermentation of corn stover. BIORESOURCE TECHNOLOGY 2025; 421:132172. [PMID: 39923860 DOI: 10.1016/j.biortech.2025.132172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
This study investigated the effectiveness and synergistic mechanism of trace-element-modified biochar (BC) on in vitro ruminal fermentation of lignocellulose. Fe/Mg-modified BC containing Fe@BC, Mg@BC and Fe/Mg@BC were prepared, and their effects on in vitro ruminal fermentation of corn stover were assessed. Results indicate that Mg@BC achieved the highest reducing-sugar content (320.4 mg/L) with an additive dose of 12 g/L and a substrate load of 4 %, owing to the presence of enriched lignocellulolytic microorganisms like Treponema and Bacillus. Moreover, Mg@BC promoted the growth of acid-producing bacteria, including Bacteroides and Lachnospiraceae, resulting in the highest production of volatile fatty acid (3.2 g/L). Fe@BC increased the amount of hydrogenogens including Prevotellaceae_YAB2003 and Lachnospiraceae_NK3A20, contributing to the highest hydrogen production. Meanwhile, Fe/Mg@BC facilitated the growth of Succiniclasticum and Lactobacillus, which effectively produce succinic and lactic acids. These findings provide new insights into efficient lignocellulose bioconversion via in vitro ruminal fermentation with Fe/Mg-modified BC supplementation.
Collapse
Affiliation(s)
- Yuping Liu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Jiyu Sun
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Taotao Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Lin Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Chenyu Zhao
- Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Jilin Agricultural University, Changchun 130118 China
| | - Jingjing Fu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Dawei Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China.
| | - Haiye Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| |
Collapse
|
3
|
Sun W, Bu K, Meng H, Zhu C. Hawthorn pectin/soybean isolate protein hydrogel bead as a promising ferrous ion-embedded delivery system. Colloids Surf B Biointerfaces 2024; 237:113867. [PMID: 38522284 DOI: 10.1016/j.colsurfb.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Huangmei Meng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
4
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
5
|
Chen W, Mao W, Liu Z, Hou W, Kumar N, Sun J, Cai X, Huang C, Shen W, Yang F, Cui Y, Lee HK, Tang S. Photocatalytic degradation of bisphenol A by temperature-sensitive magnetic hydrogel with enhanced service life. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132188. [PMID: 37557050 DOI: 10.1016/j.jhazmat.2023.132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Easy diffusion and low reusability limit the practicality of photocatalysts. In this study, a hollow sphere (HS) heterojunction was synthesized based on oxygen-doped carbon nitride (OCN) and layered double hydroxides (LDHs). A thermosensitive HS hydrogel (HS Gel) was prepared by mixing HS with N-isopropylacrylamide. Bisphenol A (BPA), being widely manufactured and used in commercial and domestical products and its high toxicity, was chosen as the target pollutant to demonstrate the photocatalytic ability and practicality of the HS Gel. HS Gel presented effective BPA degradation (95% degradation in 70 mins, 4.2 × 10-2 min-1 of kobs) at ambient temperature which is much better than kobs = 1.8 × 10-2 min-1 of OCN and kobs = 0.08 × 10-2 min-1 of LDH), and increased by two-fold the recycling service life (retention of >80% degradation efficiency after 13 usage cycles) compared to other carbon-based photocatalysts (retention of >80% degradation efficiency after 5-6 usage cycles). This is due to its multifunctional characteristics (magnetic property and thermal sensitivity). Under ambient temperature, the hydrophilic HS Gel swelled in the aqueous solution, which promoted the photocatalytic reaction between HS and BPA in the gel state. After the reaction, the HS Gel was subjected to shrinkage by high temperature heating to enhance the mechanical strength for recovery. The magnetic recovery was realized by the paramagnetic properties of layered double oxide to reduce environmental interference. Detailed studies of HS gel related to enhanced service life were conducted including structural changes, catalyst leaking and magnetic changing. A new kind of type Ӏ plus Z-scheme mechanism was also proposed based on the Kubelka-Munk equation, UV diffuse reflectance spectroscopy and Mott-Schotty technique.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Weilin Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jun Sun
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Cheng Huang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Yanjuan Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China; Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, PR China.
| |
Collapse
|
6
|
Wang X, Hou H, Liu P, Hou L, Yang T, Dai H, Li J. Acceleration of nitrogen removal performance in a biofilm reactor augmented with Pseudomonas sp. using polycaprolactone as carbon source for treating low carbon to nitrogen wastewater. BIORESOURCE TECHNOLOGY 2023; 386:129507. [PMID: 37468003 DOI: 10.1016/j.biortech.2023.129507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) process was achieved in a moving bed biofilm reactor after 180-days acclimation using PCL as carbon source for low C/N wastewater treatment. A novel HN-AD strain, JQ-H3, with ability of PCL degradation was augmented to improve nitrogen removal. TN removal efficiencies of 82.31%, 90.05%, and 93.16% were achieved in the augmented reactor (R2), at different HRTs of 24 h, 20 h, and 16 h, while in the control reactor (R1), the TN removal efficiencies were 59.24%, 74.61%, and 76.68%. The effluent COD in R2 was 10.17 mg/L, much lower than that of 42.45 mg/L in R1. Microbial community analysis revealed that JQ-H3 has successfully proliferated with a relative abundance of 4.79%. Relative abundances of functional enzymes of nitrogen cycling remarkably increased due to bioaugmentation based on the analysis of PICRUSt2. This study provides a new approach for enhancing nitrogen removal in low C/N sewage treatment via the HN-AD process.
Collapse
Affiliation(s)
- Xiujie Wang
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Huimin Hou
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Peizheng Liu
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Liangang Hou
- Water & Environmental Protection Department, China Construction First Group Construction & Development Co., Ltd. Beijing, 100102, China
| | - Tongyi Yang
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hongliang Dai
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jun Li
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|