1
|
Wang R, Wang Z, Li C, Chen J, Zhu N. Deciphering the mechanism of microbial metabolic function shift and dissolved organic matter variation in acidogenic fermentation of waste activated sludge induced by antiviral drugs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123711. [PMID: 39689537 DOI: 10.1016/j.jenvman.2024.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Antiviral drugs (ATVs), as emerging contaminants enriched in wastewater activated sludge (WAS) in wastewater treatment plants, affect subsequent treatment. ATVs have been shown to have negative influences on anaerobic digestion of WAS, but it is unclear how ATVs affect functional microbial metabolic activity and changes in intermediates. Thus, the effect of the anti-HIV drug ritonavir (RIT) on the period of anaerobic fermentation (AF) and the response of microbial community structure were examined in this study. Results indicated that the production of total volatile fatty acids (VFAs) decreased from 2010.21 mg/L to 372.03 mg/L under 125-1000 μg RIT/kg TSS treatment. Characterization of organic matters revealed that dissolved organic matter in the high-dose RIT groups was less biodegradable, with lower protein content and higher humus content. Mechanistic analyses indicated that RIT exposure reduced the abundance of hydrolyzers and inhibited carbohydrate metabolism, resulting in an increased humification index in the RIT groups. In addition, the expression of genes associated with the synthesis of VFAs was also significantly reduced in the RIT groups, leading to a decrease in both the amount and type of VFAs. This study provides a novel perspective on the effects of emerging contaminants on WAS treatment processes and pollution prevention.
Collapse
Affiliation(s)
- Ruming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuoqin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiamiao Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Li Z, Yuan D. Metagenomic Analysis Reveals the Effects of Microplastics on Antibiotic Resistance Genes in Sludge Anaerobic Digestion. TOXICS 2024; 12:920. [PMID: 39771135 PMCID: PMC11728465 DOI: 10.3390/toxics12120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment. This study utilized metagenomic approaches to analyze the dynamics of various types of ARGs and potential microbial mechanisms under exposure to MPs during the AD process. The findings indicated that MPs in the AD process can enhance the proliferation of ARGs, with the extent of this enhancement increasing with the dosage of MPs: polyethylene (PE), polyethylene terephthalate (PET), and polylactic acid (PLA) MPs increased the abundance of ARGs in the anaerobic digestion system by up to 29.90%, 18.64%, and 14.15%, respectively. Additionally, the presence of MPs increased the relative abundance of mobile genetic elements (MGEs) during the AD process. Network correlation analysis further revealed that plasmids represent the predominant category of MGEs involved in the HGT of ARGs. Propionibacterium and Alicycliphilus were identified as the primary potential hosts for these ARGs. The results of gene function annotation indicated that exposure to MPs led to an increased the relative abundance of genes related to the production of reactive oxygen species (ROS), alterations in membrane permeability, ATP synthesis, and the secretion of extracellular polymeric substances (EPS). These genes play crucial roles in influencing the HGT of ARGs.
Collapse
Affiliation(s)
| | - Donghai Yuan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
| |
Collapse
|
3
|
Fundneider-Kale S, Kerres J, Engelhart M. Impact of benzalkonium chloride on anaerobic granules and its long-term effects on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135183. [PMID: 39024763 DOI: 10.1016/j.jhazmat.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study assessed the inhibitory and performance-degrading effects induced by the cationic surfactant benzalkonium chloride (BAC) on anaerobic granules during the long-term operation of a laboratory-scale expanded granular sludge bed (EGSB) reactor. To address the critical scientific problem of how BAC affects the efficiency of EGSB reactors, this research uniquely evaluated the long-term stress response to BAC by systematically comparing continuous and discontinuous inhibitor exposure scenarios. The novel comparison demonstrated that inhibitor concentration is of minor relevance compared to the biomass-specific cumulative inhibitor load in the reactor. After exceeding a critical biomass-specific cumulative inhibitor load of 6.1-6.5 mg BAC/g VS, continuous and discontinuous exposure to BAC caused comparable significant deterioration in reactor performance, including accumulation of volatile fatty acids (VFA), decreased removal efficiency, reduced methane production, as well as the wash-out, flotation, and disintegration of anaerobic granules. BAC exposures had a more detrimental effect on methanogenesis than on acidogenesis. Moreover, long-term stress by BAC led to an inhibition of protein production, resulting in a decreased protein-to-polysaccharide ratio of extracellular polymeric substances (EPS) that promoted destabilizing effects on the granules. Finally, hydrogenotrophic methanogenesis was triggered. Reactor performance could not be restored due to the severe loss of granular sludge.
Collapse
Affiliation(s)
- S Fundneider-Kale
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany.
| | - J Kerres
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| |
Collapse
|
4
|
Ding W, Fan X, Zhou X, Liu R, Chen C, Jin W, Sun J, Li X, Jiang G, Liu H. Performance and mechanisms of zero valent iron enhancing short-chain fatty acids production during thermophilic anaerobic fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169025. [PMID: 38056647 DOI: 10.1016/j.scitotenv.2023.169025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
This work first explored the feasibility and possible mechanisms of zero valent iron (ZVI) pretreatment on the generation of short-chain fatty acids (SCFAs) during thermophilic anaerobic fermentation of waste activated sludge (WAS). Results showed that ZVI enhanced the quantity of SCFAs. On Day 6, the SCFAs production reached 455.84 ± 47.88 mg COD/g VSS at 5 g/L of ZVI addition, which increased by 63.80 % relative to control. The presence of ZVI can effectively promote butyric-based fermentation. ZVI accelerated the destruction of extracellular polymeric substances (EPS) and interior sludge cells, as well as improved biodegradation of soluble organics. Also, ZVI enhanced key enzyme activities (i.e., BK and CoA-), thus promoting degradation rates of acidogenesis (6.30 ± 0.84 mg/(gVSS·h) in glucose) and acetogenesis (74.63 ± 0.29 mg/(gVSS·h) in butyrate). Compared to Fe(III), the contribution of Fe(II) was higher among the decomposition products of ZVI. Besides, ZVI favored Proteobacteria and Actinobacteria, which enhanced acetate formation and organic compounds disassimilation of the process, respectively. The abundance of Tepidiphilus, Thermobrachium and Tepidimicrobium was increased, indicating promoting the system stability of SCFAs production in thermophilic anaerobic fermentation.
Collapse
Affiliation(s)
- Wanqing Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xiumin Fan
- Shenzhen Ecological and Environmental Intelligent Management and Control Center, Shenzhen 518034, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Ruining Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|