1
|
Zhang Z, Joudiazar S, Satpathy A, Fernando E, Rahmati R, Kim J, de Falco G, Datta R, Sarkar D. Removal of Per- and Polyfluoroalkyl Substances Using Commercially Available Sorbents. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1299. [PMID: 40141583 PMCID: PMC11943809 DOI: 10.3390/ma18061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (qmax = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with qmax values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Sevda Joudiazar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Anshuman Satpathy
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Eustace Fernando
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Roxana Rahmati
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Junchul Kim
- Tetra Tech, Inc., King of Prussia, PA 19406, USA;
| | - Giacomo de Falco
- New York City Department of Environmental Protection, New York City, NY 11368, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| |
Collapse
|
2
|
Keshmiri-Naqab R, Taghavijeloudar M. Efficient adsorption of acid orange 7 from wastewater using novel bio-natural granular bentonite-sawdust-corncob (GBSC): Mixture optimization, adsorption kinetic and regeneration. ENVIRONMENTAL RESEARCH 2024; 262:119966. [PMID: 39260722 DOI: 10.1016/j.envres.2024.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.
Collapse
Affiliation(s)
- Rasoul Keshmiri-Naqab
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, P.O. Box: 47148-873113, Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, P.O. Box:151-744, Seoul, South Korea.
| |
Collapse
|
3
|
Ganji H, Taghavijeloudar M. Efficient adsorption of lead and copper from water by modification of sand filter with a green plant-based adsorbent: Adsorption kinetics and regeneration. ENVIRONMENTAL RESEARCH 2024; 259:119529. [PMID: 38960359 DOI: 10.1016/j.envres.2024.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
In this study, pomegranate seed waste (PSW) was added into sand filter (SF) to increase removal efficiency of Lead (Pb(II)) and Copper (Cu(II)) from polluted water. The performance of PSW was compared with activated carbon (AC) as a typical adsorbent. Based on the SEM, EDX, FTIR, XRD, BET and proximate analyses, PSW had porous structure with specific surface area of 2.76 m2/g and active compounds which suggested PSW as an appropriate adsorbent for heavy metals (HMs) adsorption. According to the batch experiments, SF without treatment could only remove 46% and 35% of Pb(II) and Cu(II), respectively. These numbers increased to 88% and 75% for Pb(II) and Cu(II) by adding 3 g/kg PSW to the SF, respectively under the optimal conditions of HMs initial concentrations = 100 mg/L, pH = 7 and contact time = 60 min. The adsorption kinetic and isotherm followed the pseudo-first-order and Langmuir models, respectively indicating that mainly physisorption was involved in the HMs adsorption process of PSW. Based on the column experiments (flow rate = 62.5 mL/min), the Pb(II) and Cu(II) removal increased from 14% to 60% and 10%-55%, respectively after 5 pore volumes (40 min) by adding 3 g/kg PSW to the SF. Breakthrough curves matched better with Thomas mode rather than Adam's Bohart proving Langmuir adsorption isotherm. Our finding suggested modification of SF with PSW is a promising approach for efficient removal of HMs from water.
Collapse
Affiliation(s)
- Hoda Ganji
- Department of Water Engineering, Ferdowsi University of Mashhad, 917966-6549, Mashhad, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
4
|
El-Habacha M, Lagdali S, Dabagh A, Mahmoudy G, Assouani A, Benjelloun M, Miyah Y, Iaich S, Chiban M, Zerbet M. High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study. ENVIRONMENTAL RESEARCH 2024; 259:119542. [PMID: 38969319 DOI: 10.1016/j.envres.2024.119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Wastewater textile dye treatment is a challenge that requires the development of eco-friendly technology to avoid the alarming problems associated with water scarcity and health-environment. This study investigated the potential of phengite clay as naturally low-cost abundant clay from Tamgroute, Morocco (TMG) that was activated with a 0.1 M NaOH base (TMGB) after calcination at 850 °C for 3 h (TMGC) before its application in the Congo red (CR) anionic dye from the aqueous solution. The effect of various key operational parameters: adsorbent dose, contact time, dye concentration, pH, temperature, and the effect of salts, was studied by a series of adsorption experiments in a batch system, which affected the adsorption performance of TMG, TMGC, and TMGB for CR dye removal. In addition, the properties of adsorption kinetics, isotherms, and thermodynamics were also studied. Experimental results showed that optimal adsorption occurred at an acidic pH. At a CR concentration of 100 mg L-1, equilibrium elimination rates were 68%, 38%, and 92% for TMG, TMGC, and TMGB, respectively. The adsorption process is rapid, follows pseudo-second-order kinetics, and is best described by a Temkin and Langmuir isotherm. The thermodynamic parameters indicated that the adsorption of CR onto TMGB is endothermic and spontaneous. The experimental values of CR adsorption on TMGB are consistent with the predictions of the response surface methodology. These led to a maximum removal rate of 99.97% under the following conditions: pH = 2, TMGB dose of 7 g L-1, and CR concentration of 50 mg L-1. The adsorbent TMGB's relatively low preparation cost of around $2.629 g-1 and its ability to regenerate in more than 6 thermal calcination cycles with a CR removal rate of around 56.98%, stimulate its use for textile effluent treatment on a pilot industrial scale.
Collapse
Affiliation(s)
- Mohamed El-Habacha
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco.
| | - Salek Lagdali
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdelkader Dabagh
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Guellaa Mahmoudy
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdallah Assouani
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah Fez, Morocco
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Soulaiman Iaich
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco; Research Team of Energy and Sustainable Development, Higher School of Technology Guelmim, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Zerbet
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
5
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
6
|
Rabieian M, Taghavijeloudar M. Simultaneously removal of PAHs from contaminated soil and effluent by integrating soil washing and advanced oxidation processes in a continuous system: Water saving, optimization and scale up modeling. WATER RESEARCH 2024; 256:121563. [PMID: 38581984 DOI: 10.1016/j.watres.2024.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Every year a large amount of clean water turns into contaminated effluent by soil washing (SW) process. The release of this effluent has become a growing environmental threat. In this study, a sustainable approach was developed for effective removal of PAHs from contaminated soil and the effluent by integrating SW and advanced oxidation processes (AOPs) in a continuous system. In the constructed continuous system, first small amount of clean water passed through the contaminated soil to remove PAHs. Then, the polluted effluent was treated by a quick AOPs and recycled for SW processes again and again until a complete removal of PHE be achieved. The performance of the continuous system was optimized and compared with batch system (no circulation) at lab scale. In addition, a scale up modeling was developed to predict the performance of continuous system at large scale. According to the results, under the optimum conditions: Tween 80 (TW80) = 6 g/L, ultrasonic = 160 kW, UV = 30 W, O3 = 5 g/h and TiO2 = 2 g/m2, the final PHE degradation efficiency of 98 % and 94 % were achieved by the continuous and batch systems after 130 and 185 min, respectively. The continuous system used 5 times less water volume than the batch system but resulted in better PAHs degradation. The scale up modeling revealed at large scale (100 kg soil), the continuous system could decrease the energy consumption and the required washing solution (water + TW80) up to 50 % and 80 %, respectively in comparison to the batch system. This work suggests a promising and practical approach for contaminated soil remediation without producing polluted water.
Collapse
Affiliation(s)
- Masoud Rabieian
- Department of Civil and Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
7
|
Yan Z, Xie S, Yang M. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11886-11897. [PMID: 38225488 DOI: 10.1007/s11356-023-31057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024]
Abstract
The wastewater from organic peroxide production has high chemical oxygen demand (COD) concentration and poor biodegradability, so it is necessary to find a cost-effective treatment method. The iron-carbon microelectrolysis (IC-ME) technology was used to pretreat the organic peroxide production wastewater, and the influence of reaction conditions on the removal effect of pollutants and the degradation mechanism were studied. The effects of initial pH, iron filings, iron-carbon ratio, and reaction time on the wastewater treatment were investigated by single-factor and response surface optimization experiments, and the degradation mechanism was analyzed by three-dimensional fluorescence spectroscopy, UV-Vis, and gas chromatography mass spectrometry (GC-MS). The experimental results showed that the COD removal efficiency was 35.67% and the biodegradability of wastewater was increased from 0.113 to 0.173 under the conditions of initial pH of 3.1, the dosage of iron filings of 30.5 g/L, the ratio of iron-carbon of 1.01, and the reaction time of 122.8 min, and the process of IC-ME for degrading COD of wastewater from the production of organic peroxide was consistent with the secondary reaction. The IC-ME process could decompose macromolecular organic compounds such as tyrosine proteins and aromatic proteins, and improve the biodegradability of wastewater. It provides a theoretical reference for the practical application of IC-ME to treat this type of wastewater.
Collapse
Affiliation(s)
- Zichun Yan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou, 730070, China
| | - Shilong Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Mingxia Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
8
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
9
|
Nazari B, Abdolalian S, Taghavijeloudar M. An environmentally friendly approach for industrial wastewater treatment and bio-adsorption of heavy metals using Pistacia soft shell (PSS) through flocculation-adsorption process. ENVIRONMENTAL RESEARCH 2023; 235:116595. [PMID: 37451581 DOI: 10.1016/j.envres.2023.116595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this research, the potential application of Pistacia soft shell (PSS) was investigated as a novel bio-based flocculant for pulp and paper wastewater (PPWW) treatment. In line with this, after characterization of the PSS, the removal efficiencies of chemical oxygen demand (COD), turbidity and heavy metals (Cu2+ and Pb2+) from PPWW were investigated with different dosage of PSS. The results were compared with alum as a reference flocculant. In addition, the effect of pH adjustment on the flocculation-adsorption performance of PSS was studied under acidic and alkaline condition. Zeta potential, BET, FTIR and SEM as well as kinetics and isotherm analyses were conducted for mechanistic understanding. According to the results, PSS treatment could remove COD, turbidity, Cu2+ and Pb2+ up to 67%, 87%, 70% and 74%, respectively which were better than alum: 56%, 85%, 31% and 35%. It was observed that, pH adjustment significantly improved the performance of PSS treatment. Maximum removal efficiencies of 92%, 95%, 97% and 98% were achieved for COD, turbidity, Cu2+ and Pb2+, respectively, under optimal condition of using 2 g/L PSS at pH 9. The mechanism analysis revealed that the high removal efficiency of PSS is related to the dual flocculation-adsorption of bridging and sweeping mechanisms. The results of this study suggested PSS as a promising, sustainable and eco-friendly bio-based flocculant and adsorbent for industrial wastewater treatment.
Collapse
Affiliation(s)
- Bahman Nazari
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Saba Abdolalian
- Department of Civil and Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|