1
|
Alavianghavanini A, Moheimani NR, Bahri PA. Process design and economic analysis for the production of microalgae from anaerobic digestates in open raceway ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171554. [PMID: 38458470 DOI: 10.1016/j.scitotenv.2024.171554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
A model based framework was established for large scale assessment of microalgae production using anaerobically digested effluent considering varied climatic parameters such as solar irradiance and air temperature. The aim of this research was to identify the optimum monthly average culture depth operation to minimize the cost of producing microalgae grown on anaerobic digestion effluents rich in ammoniacal nitrogen with concentration of 248 mg L-1. First, a productivity model combined with a thermal model was developed to simulate microalgae productivity in open raceway ponds as a function of climatic variables. Second, by combining the comprehensive open pond model with other harvesting equipment, the final techno economic model was developed to produce a microalgae product with 20 wt% biomass content and treated water with <1 mg L-1 ammoniacal nitrogen. The optimization approach on culture depth for outdoor open raceway ponds managed to reduce the cost of microalgae production grown in anaerobic digested wastewater up to 16 %, being a suitable solution for the production of low cost microalgae (1.7 AUD kg-1 dry weight) at possible scale of 1300 t dry weight microalgae yr-1.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
2
|
Huang H, He M, Liu X, Ma X, Yang Y, Shen Y, Yang Y, Zhen Y, Wang J, Zhang Y, Wang S, Shan X, Fan W, Guo D, Niu Z. The dynamic features and microbial mechanism of nitrogen transformation for hydrothermal aqueous phase as fertilizer in dryland soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120643. [PMID: 38513582 DOI: 10.1016/j.jenvman.2024.120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Hydrothermal aqueous phase (HAP) contains abundant organics and nutrients, which have potential to partially replace chemical fertilizers for enhancing plant growth and soil quality. However, the underlying reasons for low available nitrogen (N) and high N loss in dryland soil remain unclear. A cultivation experiment was conducted using HAP or urea to supply 160 mg N kg-1 in dryland soil. The dynamic changes of soil organic matters (SOMs), pH, N forms, and N cycling genes were investigated. Results showed that SOMs from HAP stimulated urease activity and ureC, which enhanced ammonification in turn. The high-molecular-weight SOMs relatively increased during 5-30 d and then biodegraded during 30-90 d, which SUV254 changed from 0.51 to 1.47 to 0.29 L-1 m-1. This affected ureC that changed from 5.58 to 5.34 to 5.75 lg copies g-1. Relative to urea, addition HAP enhanced ON mineralization by 8.40 times during 30-90 d due to higher ureC. It decreased NO3-N by 65.35%-77.32% but increased AOB and AOA by 0.25 and 0.90 lg copies g-1 at 5 d and 90 d, respectively. It little affected nirK and increased nosZ by 0.41 lg copies g-1 at 90 d. It increased N loss by 4.59 times. The soil pH for HAP was higher than that for urea after 11 d. The comprehensive effects of high SOMs and pH, including ammonification enhancement and nitrification activity inhibition, were the primary causes of high N loss. The core idea for developing high-efficiency HAP fertilizer is to moderately inhibit ammonification and promote nitrification.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China; Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| | - Maoyuan He
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xiaoyan Liu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xiaoli Ma
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Ying Yang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yuanlei Shen
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yujia Yang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yanzhong Zhen
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Jian Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Yongtao Zhang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Shuai Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Xianying Shan
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Wenyan Fan
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Di Guo
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Zhirui Niu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China; Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|