1
|
Choi Y, Lee M, Nam C. Catechol-Fe(III) complexes modified PVDF membrane for hazardous pollutants separation and antifouling properties. CHEMOSPHERE 2024; 364:143094. [PMID: 39151589 DOI: 10.1016/j.chemosphere.2024.143094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Organic pollutants, such as toluene and xylene, in industrial wastewater negatively impact the environment. Membrane treatment is one of the best methods to reduce impurities in wastewater. Existing membranes that coat the water surface with hydrophilic material only effectively resist the initial fouling, resulting in poor oil and water selectivity. Here we report a simple and efficient method to enhance the water flux and antifouling properties of polyvinylidene fluoride (PVDF) membranes. This method involves developing and applying Catechol-Fe(III) complexes with a rough surface to the PVDF surface. Forming Catechol-Fe(III) complexes on the surface better anchors them to the membrane than the dip-coating method. The PVDF membranes with rough Catechol-Fe(III) complexes are superoleophobic, with an oil contact angle of 152 ° and high permeability, with pure water flux of 10487 Lm-2h-1bar-1 and 1 wt% toluene in water emulsion flux of 4697 Lm-2h-1bar-1. Overall, the straightforward manufacturing process, increased permeability, and outstanding antifouling capabilities of the PVDF membrane incorporating rough nanoparticles offer promising prospects for designing and implementing suitable membranes for oil in water emulsion separation applications.
Collapse
Affiliation(s)
- Youngmin Choi
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Moonjin Lee
- Maritime Safety Research Division, Korea Research Institute of Ships and Ocean Engineering, KIOST, Daejeon, 305-343, Republic of Korea
| | - Changwoo Nam
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
2
|
Li S, Duan L, Zhang H, Zhao Y, Li M, Jia Y, Gao Q, Yu H. Critical review on salt tolerance improvement and salt accumulation inhibition strategies of osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2024; 406:130957. [PMID: 38876283 DOI: 10.1016/j.biortech.2024.130957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.
Collapse
Affiliation(s)
- Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
3
|
Sepehri S, Javadi Moghaddam J, Abdoli S, Asgari Lajayer B, Shu W, Price GW. Application of artificial intelligence in modeling of nitrate removal process using zero-valent iron nanoparticles-loaded carboxymethyl cellulose. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:262. [PMID: 38926193 DOI: 10.1007/s10653-024-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe0-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characterization results, the specific surface area of Fe0-CMC measured by the Brunauer-Emmett-Teller analysis were 39.6 m2/g. In addition, Scanning Electron Microscopy images displayed that spherical nano zero-valent iron particles (nZVI) with an average particle diameter of 80 nm are surrounded by carboxymethyl cellulose and no noticeable aggregates were detected. Batch experiments assessed Fe0-CMC's effectiveness in nitrate removal under diverse conditions including different adsorbent dosages (Cs, 2-10 mg/L), contact time (t, 10-1440 min), initial pH (pHi, 2-10), temperature (T, 10-55 °C), and initial concentration of nitrate (C0, 10-500 mg/L). Results indicated decreased removal with higher initial pHi and C0, while increased Cs and T enhanced removal. The study of nitrate removal mechanism by Fe0-CMC revealed that the redox reaction between immobilized nZVI on the CMC surface and nitrate ions was responsible for nitrate removal, and the main product of this reaction was ammonium, which was subsequently completely removed by the synthesized nanocomposite. In addition, a stable deviation quantum particle swarm optimization algorithm (SD-QPSO) and a least square error method were employed to train the ANFIS parameters. To demonstrate model performance, a quadratic polynomial function was proposed to display the performance of the SD-QPSO algorithm in which the constant parameters were optimized through the SD-QPSO algorithm. Sensitivity analysis was conducted on the proposed quadratic polynomial function by adding a constant deviation and removing each input using two different strategies. According to the sensitivity analysis, the predicted removal efficiency was most sensitive to changes in pHi, followed by Cs, T, C0, and t. The obtained results underscore the potential of the ANFIS model (R2 = 0.99803, RMSE = 0.9888), and polynomial function (R2 = 0.998256, RMSE = 1.7532) as accurate and efficient alternatives to time-consuming laboratory measurements for assessing nitrate removal efficiency. These models can offer rapid insights and predictions regarding the impact of various factors on the process, saving both time and resources.
Collapse
Affiliation(s)
- Saloome Sepehri
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31585-845, Karaj, Iran.
| | - Jalal Javadi Moghaddam
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31585-845, Karaj, Iran
| | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behnam Asgari Lajayer
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada.
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
4
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
5
|
Zeng B, Tao B, Pan Z, Shen L, Zhang J, Lin H. A low-cost and sustainable solution for nitrate removal from secondary effluent: Macroporous ion exchange resin treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119142. [PMID: 37804631 DOI: 10.1016/j.jenvman.2023.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Macroporous ion exchange resin has excellent selectivity to nitrogen (N), phosphorus (P) and partially soluble refractory organic compounds contained in the secondary effluent of wastewater treatment plants (WWTP). In this study, macroporous ion exchange resins were chosen as an alternative to single biochemical nitrogen removal processes. Various conditions were examined to optimize adsorption performance, and the adsorption mechanism was explored through isotherm fitting, thermodynamic parameter calculation, and kinetic analysis. The experiment demonstrated that the resin exhibited strong selectivity for nitrate (NO3-) and achieved an equilibrium adsorption amount of 9.8924 mg/g and an equilibrium adsorption time of 60 min at 25 °C. The resin denitrification pilot plant demonstrated stable operation for two months and achieved COD<20 mg/L, TN < 1.5 mg/L, and NH4+-N<0.5 mg/L. The removal rates of COD, TP, NH4+-N, NO3--N, and TN were 41.65%, 42.96%, 55.37%, 91.8%, and 90.81%, respectively. After the resin was regenerated, the removal rates of NO3--N, TN and the regeneration recovery rate were above 90%. Through cost analysis, the treatment cost of the pilot plant is only 0.104 $/m3. This study presents a practical, low-cost, and efficient treatment method for the deep treatment of secondary effluent from WWTP in practical engineering, providing new ideas and theoretical guidance.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bingchi Tao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|