1
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
2
|
Xu H, Liu C, Wang A, Yue B, Lin T, Ding M. Microalgae treatment of food processing wastewater for simultaneous biomass resource recycling and water reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122394. [PMID: 39241593 DOI: 10.1016/j.jenvman.2024.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Food processing wastewater presents a considerable challenge for treatment owing to its elevated nitrogen and phosphorus levels. Nonetheless, it possesses inherent value attributed to its abundant nutrients and organic content. This study presents an innovative approach for treating food processing wastewater and reusing biomass. Initially, the secondary-treated wastewater undergoes flocculation and sedimentation, followed by reverse osmosis to ensure that the effluent meets reuse standards. Subsequently, reverse osmosis concentrates, generated at varying water recovery rates, are utilized for microalgae cultivation to recover nitrogen and phosphorus. Furthermore, this study highlights the potential of reverse osmosis concentrates in reducing the water demand for microalgae cultivation and in producing commercial-grade nutrients. The findings reveal that reverse osmosis achieves removal rates exceeding 90 % for both nitrogen and phosphorus and effluent meets reuse standards. Following seven days of cultivation, microalgae cultured in reverse osmosis concentrated water with an 80 % water recovery rate demonstrate denitrification and phosphorus removal rates of 73.88 % and 80.92 % respectively, with a biomass concentration of 563 mg/L and a protein yield of 128 mg/L. Moreover, a total volumetric energy yield of 10.08 kJ/L is obtained, facilitating energy valorization. In conclusion, this study offers practical solutions for wastewater treatment and resource recovery, enabling the attainment of zero discharge of pollutants while generating valuable resources through microalgae cultivation.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China; Suzhou Research Institute, Hohai University, SuZhou, 215100, China.
| | - Chen Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China
| | - Ao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China; Suzhou Research Institute, Hohai University, SuZhou, 215100, China
| | - Baofeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1 Xikang Road, Nanjing, 210098, China; Suzhou Research Institute, Hohai University, SuZhou, 215100, China.
| |
Collapse
|
3
|
Najar-Almanzor CE, Velasco-Iglesias KD, Solis-Bañuelos M, González-Díaz RL, Guerrero-Higareda S, Fuentes-Carrasco OJ, García-Cayuela T, Carrillo-Nieves D. Chlorella vulgaris-mediated bioremediation of food and beverage wastewater from industries in Mexico: Results and perspectives towards sustainability and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173753. [PMID: 38838494 DOI: 10.1016/j.scitotenv.2024.173753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.
Collapse
Affiliation(s)
- Cesar E Najar-Almanzor
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Karla D Velasco-Iglesias
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Minerva Solis-Bañuelos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Rosa Leonor González-Díaz
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Santiago Guerrero-Higareda
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Oscar J Fuentes-Carrasco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Awathare P, Hait S, Gawali S, Nayak M, Kumar NR, Guldhe A. Developing biomass augmentation strategy for cultivation of Marvania coccoides using fruit waste and wastewater based growth medium for biodiesel production. BIORESOURCE TECHNOLOGY 2024; 404:130911. [PMID: 38821425 DOI: 10.1016/j.biortech.2024.130911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Microalgae cultivation using waste as nutrient source can minimize the use of expensive chemical nutrients and valuable freshwater. In present work, novel microalgae Marvania coccoides was cultivated in fruit waste (FW) and wastewater (WW) based growth medium. To further augment metabolites and biomass, the culture was supplemented with phytohormone, kinetin (K). Various pre-treatment methods were investigated for improving the nutrient release and bacterial load reduction in waste-based medium. Phytohormone supplemented fruit waste and wastewater media (WW + FW + K) showed improved biomass productivity of 117.14 mg.L-1.d-1 compared to both waste-based and synthetic medium. Biomass harvested from WW + FW + K showed increased lipid content (22 %) as compared to lipid content (19 %) of biomass from synthetic medium. Biodiesel yield of 91.50 % was observed with fatty acids C16:0, C16:2, C18:0, C18:1, C18:2, C19:0, C20:1, C20:2 and C22:1 in composition. M. coccoides can be cultivated in waste medium and used as promising feedstock for production of biodiesel.
Collapse
Affiliation(s)
- Pranay Awathare
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Sinchan Hait
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Sushant Gawali
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | | | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India.
| |
Collapse
|
5
|
Liu L, Zhou Z, Gong G, Wu B, Todhanakasem T, Li J, Zhuang Y, He M. Economic co-production of cellulosic ethanol and microalgal biomass through efficient fixation of fermentation carbon dioxide. BIORESOURCE TECHNOLOGY 2024; 396:130420. [PMID: 38336213 DOI: 10.1016/j.biortech.2024.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
An integrated process for the co-production of cellulosic ethanol and microalgal biomass by fixing CO2 generated from bioethanol fermentation is proposed. Specifically, over one-fifth of the fermentative carbon was converted into high-purity CO2 during ethanol production. The optimal concentration of 4 % CO2 was identified for the growth and metabolism of Chlorella sp. BWY-1. A multiple short-term intermittent CO2 supply system was established to efficiently fix and recycle the waste CO2. Using this system, economical co-production of cellulosic ethanol by Zymomonas mobilis and microalgal biomass in biogas slurry wastewater was achieved, resulting in the production of ethanol at a rate of 0.4 g/L/h and a fixed fermentation CO2 of 3.1 g/L/d. Moreover, the amounts of algal biomass and chlorophyll a increased by over 50 % and two-fold, respectively. Through techno-economic analysis, the integrated process demonstrated its cost-effectiveness for cellulosic ethanol production. This study presents an innovative approach to a low-carbon circular bioeconomy.
Collapse
Affiliation(s)
- Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Zheng Zhou
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guiping Gong
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| | - Tatsaporn Todhanakasem
- School of Food Industry, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
| | - Jianting Li
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|