1
|
Bøllingtoft A, Bjerg PL, Rønde V, Tuxen N, Nowak W, Troldborg M. Quantification of contaminant mass discharge and uncertainties: Method and challenges in application at contaminated sites. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104453. [PMID: 39541662 DOI: 10.1016/j.jconhyd.2024.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Contaminant mass discharge (CMD) estimation involves combining multilevel concentration and flow measurements to quantify the contaminant mass passing through a control plane downgradient of a point source. However, geological heterogeneities and limited data introduce uncertainties that complicate CMD estimation and risk assessment. Although CMD is increasingly used in groundwater management, methods for quantifying and handling these uncertainties are still needed. This study develops and tests a CMD estimation method based on Bayesian geostatistics to quantify CMD uncertainties using data from a control plane perpendicular to the contaminant plume. By combining geostatistical conditional simulations of the spatial concentration distribution with the flow, an ensemble of CMD realizations is generated, from which a cumulative distribution function is derived. A key element of this approach is the use of a macrodispersive transport model to simulate the spatial concentration trend. This ensures that the estimated concentration reflects the expected physical behavior of the contaminant plume while also allowing the integration of site-specific conceptual information. The method is applicable to plumes with dissolved contaminants, such as chlorinated solvents, petroleum hydrocarbons, Per- and polyfluoroalkyl substances (PFAS) and pesticides. Site-specific conceptual understanding is used to inform the prior probability density functions of the structural model parameters and to define acceptable simulated concentration limits. We applied the method at three sites contaminated with chlorinated ethenes, demonstrating its robustness across varying information levels and data availability. Our results shows that strong site-specific conceptual knowledge and high sampling density constrain the CMD uncertainty (CV = 21 %) and results in estimated model parameters and a spatial concentration distribution that agrees well with the conceptual model. For a site with less data and limited conceptual knowledge, CMD and concentration distribution estimates are still feasible, though with higher uncertainty (CV = 41 %). Extending the method to account for multiple source zones and complex plume migration improved parameter identification and reduced the 95 % CMD confidence interval by 11 % ([4950-8750] to [5090-8480] g yr-1), while also providing a spatial concentration distribution in better agreement with the plume conceptualization. This study highlights the importance of integrating site-specific conceptual knowledge in CMD estimation, particularly for less-sampled sites. The method can furthermore assist in identifying remediation targets, evaluating remedial effectiveness, and optimizing sampling strategies.
Collapse
Affiliation(s)
- A Bøllingtoft
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - P L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - V Rønde
- NIRAS, Sortemosevej 19, 3450 Allerød, Denmark
| | - N Tuxen
- The Capital Region of Denmark, Denmark
| | - W Nowak
- Institute for Modelling Hydraulic and Environmental Systems (IWS), Universität Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
2
|
Broers HP, Kivits T, Sültenfuß J, Ten Harkel M, van Vliet M. Mobility and persistence of pesticides and emerging contaminants in age-dated and redox-classified groundwater under a range of land use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176344. [PMID: 39304139 DOI: 10.1016/j.scitotenv.2024.176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Understanding groundwater contamination patterns is hampered by the heterogeneous groundwater age and redox status over the depth range typically sampled for identifying pesticides and emerging contaminants threats. This study explores depth patterns of groundwater age and redox status across various land use types, unraveling spatial and temporal trends of pesticides and emerging contaminants using data from groundwater quality monitoring in the south of the Netherlands. The Netherlands is an ideal testing ground due to its high population density and widespread groundwater contamination from multiple sources. 146 multi-level observation wells were age-dated using 3H/3He, and contaminant concentrations were analyzed based on recharge year, land use type, and redox conditions, mitigating uncertainties from spatial and depth-dependent variations in both groundwater age and redox status. Redox-recharge year diagrams were developed to visually evaluate contaminant patterns in relation to these factors and to assess concentration patterns in relation to contamination history. Most detections of pesticides, metabolites, and emerging contaminants occurred in the youngest recharge periods (2000-2010 and 2010-2020) and in agricultural areas. However, certain contaminants, including BAM, desphenyl-chloridazon, short-chain PFCAs, PFOA, and EDTA, were consistently found in older water and Fe- or SO4-reduced conditions, indicating their mobility and persistence in the regional groundwater system. Comparing the presence of contaminants in specific redox classes and recharge periods with known application or leaching history provides insights into retardation (e.g., PFOS) and degradation (e.g., 2-hydroxy-atrazine, benzotriazole), explaining lower detection frequencies in earlier recharge periods. Identifying recharge years from age-dated groundwater helps relate contaminants to farmland application or river water recharge periods, revealing leaching history and contamination origins. The presented framework has the potential to enhance the interpretation of large groundwater datasets from dedicated, short-screened observation wells, such as those from the Danish GRUMO network, the Dutch monitoring networks, and parts of the US National Water Quality Program.
Collapse
Affiliation(s)
- Hans Peter Broers
- TNO Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands.
| | - Tano Kivits
- TNO Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
| | - Jürgen Sültenfuß
- Universität Bremen, Institute of Environmental Physics, Department of Oceanography, Bremen, Germany
| | | | - Mariëlle van Vliet
- TNO Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
| |
Collapse
|
3
|
Lemaire GG, Broholm MM, Wünsch U, Hirsch M, Ottosen CF, Thrane BB, Pedersen JK, Dissing L, Bjerg PL. Contaminant mass discharge estimation of a sulfonamide plume by use of hydraulic profiling tool (HPT) and fluorescence techniques. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104422. [PMID: 39260022 DOI: 10.1016/j.jconhyd.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The contaminant mass discharge is a relevant metric to evaluate the risk that a groundwater plume poses to water resources. However, this assessment is often vitiated by a high uncertainty inherent to the assessment method and often limited number of measurement points to carry out the assessment. Direct-Push techniques in combination with profiling tools and dedicated sampling can be an interesting alternative to increase the measurement point density and hence reduce the mass discharge uncertainty. The main objective of our study was to assess if DP logging and sampling could be employed to get a reasonable estimate of contaminant mass discharge in a large sulfonamide contaminant plume (> 1500 m wide), compared to a more traditional approach based on monitoring wells. To do so, an Hydraulic Profiling Tool (HPT) logging with a dedicated site calibration was used to estimate the hydraulic conductivity field. The sulfonamide concentrations were inferred from the compound fluorescence properties measured by laboratory spectrofluorometry (λEx / λEm = 255/340 nm) and a dedicated log-log linear regression model. Our results show that HPT-derived hydraulic conductivity values are in good agreement with the monitoring well results, and within the order of magnitude reported in similar studies or indirect geophysical techniques. Fluorescence appears as a powerful proxy for the sulfonamide concentration levels. Ultimately, the contaminant mass discharge estimate from HPT and fluorescence techniques lies within a factor 2 from the estimate by monitoring wells, with 549 [274-668] and 776 [695-879] kg/yr respectively. Overall, this study highlights that DP logging tools combined with indirect methods (correlation with fluorescence) could provide a relevant contaminant mass discharge estimate for some optically active substances, given that a proper calibration phase is carried out.
Collapse
Affiliation(s)
- G G Lemaire
- DTU Sustain, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| | - M M Broholm
- DTU Sustain, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - U Wünsch
- DTU AQUA, Technical University of Denmark, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark
| | - M Hirsch
- Fugro Germany Land GmbH, Emil-Berliner-Straße 17, 30851, Langenhagen, Germany
| | - C F Ottosen
- DTU Sustain, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - B B Thrane
- Rambøll, Hannemanns Allé 53, 2300, Copenhagen, Denmark
| | - J K Pedersen
- Region Syddanmark, Damhaven 12 7100, Vejle, Denmark
| | - L Dissing
- Region Syddanmark, Damhaven 12 7100, Vejle, Denmark
| | - P L Bjerg
- DTU Sustain, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Ottosen CF, Bjerg PL, Kümmel S, Richnow HH, Middeldorp P, Draborg H, Lemaire GG, Broholm MM. Natural attenuation of sulfonamides and metabolites in contaminated groundwater - Review, advantages and challenges of current documentation techniques. WATER RESEARCH 2024; 254:121416. [PMID: 38489851 DOI: 10.1016/j.watres.2024.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Sulfonamides are applied worldwide as antibiotics. They are emerging contaminants of concern, as their presence in the environment may lead to the spread of antibiotic resistance genes. Sulfonamides are present in groundwater systems, which suggest their persistence under certain conditions, highlighting the importance of understanding natural attenuation processes in groundwater. Biodegradation is an essential process, as degradation of sulfonamides reduces the risk of antibiotic resistance spreading. In this review, natural attenuation, and in particular assessment of biodegradation, is evaluated for sulfonamides in groundwater systems. The current knowledge level on biodegradation is reviewed, and a scientific foundation is built based on sulfonamide degradation processes, pathways, metabolites and toxicity. An overview of bacterial species and related metabolites is provided. The main research effort has focused on aerobic conditions while investigations under anaerobic conditions are lacking. The level of implementation in research is laboratory scale; here we strived to bridge towards field application and assessment, by assessing approaches commonly used in monitored natural attenuation. Methods to document contaminant mass loss are assessed to be applicable for sulfonamides, while the approach is limited by a lack of reference standards for metabolites. Furthermore, additional information is required on relevant metabolites in order to improve risk assessments. Based on the current knowledge on biodegradation, it is suggested to use the presence of substituent-containing metabolites from breakage of the sulfonamide bridge as specific indicators of degradation. Microbial approaches are currently available for assessment of microbial community's capacities, however, more knowledge is required on indigenous bacteria capable of degrading sulfonamides and on the impact of environmental conditions on biodegradation. Compound specific stable isotope analysis shows great potential as an additional in situ method, but further developments are required to analyse for sulfonamides at environmentally relevant levels. Finally, in a monitored natural attenuation scheme it is assessed that approaches are available that can uncover some processes related to the fate of sulfonamides in groundwater systems. Nevertheless, there are still unknowns related to relevant bacteria and metabolites for risk assessment as well as the effect of environmental settings such as redox conditions. Alongside, uncovering the fate of sulfonamides in future research, the applicability of the natural attenuation documentation approaches will advance, and provide a step towards in situ remedial concepts for the frequently detected sulfonamides.
Collapse
Affiliation(s)
- Cecilie F Ottosen
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark.
| | - Poul L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| | - Steffen Kümmel
- Department Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans H Richnow
- Department Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | | | | | - Gregory G Lemaire
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| | - Mette M Broholm
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Mosthaf K, Rosenberg L, Broholm MM, Fjordbøge AS, Lilbæk G, Christensen AG, Bjerg PL. Quantification of contaminant mass discharge from point sources in aquitard/aquifer systems based on vertical concentration profiles and 3D modeling. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104281. [PMID: 38061244 DOI: 10.1016/j.jconhyd.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Point sources with contaminants, such as chlorinated solvents, per- and polyfluoroalkyl substances (PFAS), or pesticides, are often located in low-permeability aquitards, where they can act as long-term sources and threaten underlying groundwater resources. We demonstrate the use of a 3D numerical model integrating comprehensive hydrogeological and contamination data to determine the contaminant mass discharge (CMD) from an aquitard into the underlying aquifer. A mature point source with a dissolved chlorinated solvent in a clayey till is used as an example. The quantitative determination is facilitated by model calibration to high-resolution vertical concentration profiles obtained by direct-push sampling techniques in the aquifer downgradient of the contaminant source zone. The concentration profiles showed a plume sinking with distance from the source characteristic for such aquitard/aquifer settings. The sinking is caused by the interplay between infiltrating water and horizontal groundwater flow. The application of 3D solute transport modeling on high-resolution profiles allowed for determining the infiltration rate, the hydraulic conductivity in the aquitard, and, ultimately, the CMD. Different source zone conceptualizations demonstrate the potential effects of fractures and sorption in source zones in aquitards on CMD development. Fractures in the aquitard had a minor influence on the current CMD determined with the presented approach. Still, fractures with hydraulic apertures larger than 10 μm were crucial for the temporal development of the CMD and plume. A thorough characterization of the source zone conditions combined with high-resolution concentration profiles and detailed modeling is valuable for shedding light on the probable future development of groundwater contamination arising from sources in aquitard/aquifer settings and evaluating remedial actions.
Collapse
Affiliation(s)
- Klaus Mosthaf
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark.
| | - Louise Rosenberg
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Mette M Broholm
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Annika S Fjordbøge
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Gro Lilbæk
- NIRAS, Sortemosevej 19, 3450 Allerød, Denmark
| | | | - Poul L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|