1
|
Wu Q, Wang S. Study of modified ion exchange resins for phosphorus removal from glyphosate by-product salt. ENVIRONMENTAL TECHNOLOGY 2024:1-15. [PMID: 39740031 DOI: 10.1080/09593330.2024.2447627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
In order to achieve the goal of phosphate removal from glyphosate by-product salts, zirconium and zinc ions were successfully loaded onto D202 resin by co-precipitation modification method in this study, and their effectiveness in phosphate removal was evaluated under various conditions. The results of static adsorption experiments showed that the Zr/Zn@D202 resin effectively reduced the phosphate concentration in the glyphosate by-product salts from 10 mg/L to less than 0.1 mg/L, which met the national level emission standard (P < 0.5 mg/L). The adsorption capacity of Zr/Zn@D202 resin was 31.26 mg/g at pH 3, temperature 30 ℃, and adsorption time 2 h. The phosphate removal rate was 99.5%. The phosphate removal efficiency of Zr/Zn@D202 resin was maintained at 92% after five cycles. The samples were characterized by SEM, EDS, XRD, FT-IR and XPS. The characterization results confirmed the successful loading of zirconium and zinc ions, and elucidated that the adsorption mechanism of phosphate mainly involves the increase of the adsorption sites on the surface of the ion-exchange resin and the ion-exchange process. The pseudo-first-order model accurately described the adsorption kinetics, while the adsorption isotherms followed the Langmuir model.
Collapse
Affiliation(s)
- Qisheng Wu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China
| | - Sen Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China
| |
Collapse
|
2
|
Li K, Cui Z, Wan K, Miao Z. Preparation of Microelectrolysis Filler Using Coal Slag for the Removal of Hazardous Substances in Contaminated Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23041-23050. [PMID: 39425670 DOI: 10.1021/acs.langmuir.4c03239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Presently, the utilization of gasification slag in the context of wastewater treatment is constrained. Furthermore, the presence of dye wastewater and wastewater containing hazardous metals represents a significant threat to human health. Accordingly, the present study prepared a microelectrolytic filler (MF) from gasification slag via a high-temperature roasting method and evaluated its degradation performance in water containing organic matter and harmful metal ions. The impact of varying preparation conditions, including initial solution pH and MF dose, on the degradation process was examined. The removal of methyl blue was found to be 92.21% at an initial pH of 2, a reaction time of 300 min and a dosage of 40 g L-1. The removal of Cu(II), Cd(II), and Pb(II) metal ions was 97.32, 96.58, and 99.38%, respectively, at an initial pH of 4, a reaction time of 180 min, and a dosage of 10 g L-1. Following five cycles, the MF process demonstrated continued efficacy in the removal of dyes and heavy metals from the wastewater. A mechanistic analysis revealed that the water treatment process is not a single adsorption process. Instead, it was found that organic macromolecules undergo chain-breaking reactions, while heavy metal ions undergo redox reactions. The wastewater treatment process comprises a number of distinct strategies, including electrochemical reactions, adsorption, flocculation, and precipitation. These findings illustrate the potential of a gasification slag green recycling approach to treat waste with waste, in alignment with the principles of sustainable development.
Collapse
Affiliation(s)
- Kexin Li
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Zhiyong Cui
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
3
|
Mamidi N, Delgadillo RM. New Zein Protein Composites with High Performance in Phosphate Removal, Intrinsic Antibacterial, and Drug Delivery Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37468-37485. [PMID: 38938118 DOI: 10.1021/acsami.4c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, poly(N-(4-aminophenyl)methacrylamide)-carbon nano-onions [abbreviated as PAPMA-CNOs (f-CNOs)] integrated gallic acid cross-linked zein composite fibers (ZG/f-CNOs) were developed for the removal/recovery of phosphate from wastewater along with controlled drug delivery and intrinsic antibacterial characteristics. The composite fibers were produced by Forcespinning followed by a heat-pressure technique. The obtained ZG/f-CNOs composite fibers presented several favorable characteristics of nanoadsorbents and drug carriers. The composite fibers exhibited excellent adsorption capabilities for phosphate ions. The adsorption assessment demonstrated that composite fibers process highly selective sequestration of phosphate ions from polluted water, even in the presence of competing anions. The ZG/f-CNOs composite fibers presented a maximum phosphate adsorption capacity (qmax) of 2500 mg/g at pH 7.0. This represents the most efficient phosphate adsorption system among all of the reported nanocomposites to date. The isotherm studies and adsorption kinetics of the adsorbent showed that the adsorption experiments followed the pseudo-second-order and Langmuir isotherm model (R2 = 0.9999). After 13 adsorption/desorption cycles, the adsorbent could still maintain its adsorption efficiency of 96-98% at pH 7.0 while maintaining stability under thermal and chemical conditions. The results mark significant progress in the design of composite fibers for removing phosphates from wastewater, potentially aiding in alleviating eutrophication effects. Owing to the f-CNOs incorporation, ZG/f-CNOs composite fibers exhibited controlled drug delivery. An antibiotic azithromycin drug-encapsulated composite fibers presented a pH-mediated drug release in a controlled manner over 18 days. Furthermore, the composite fibers displayed excellent antibacterial efficiency against Gram-positive and Gram-negative bacteria without causing resistance. In addition, zein composite fibers showed augmented mechanical properties due to the presence of f-CNOs within the zein matrix. Nonetheless, the robust zein composite fibers with inherent stimuli-responsive drug delivery, antibacterial properties, and phosphate adsorption properties can be considered promising multifunctional composites for biomedical applications and environmental remediation.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystmes, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Ramiro Manuel Delgadillo
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
4
|
Guo Z, Chen SS, Kattel GR, Qiao W, Lu L, Li R, Mkumbo AC. Scenario Analysis of Food Phosphorus Footprint in Kisumu, a Lakeside East African City in Lake Victoria (Kenya). Foods 2024; 13:2225. [PMID: 39063309 PMCID: PMC11276245 DOI: 10.3390/foods13142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Increased food production and consumption patterns have resulted in higher urban food phosphorus footprints, leading to a series of resource and environmental problems worldwide. We quantified the food phosphorus footprint of the African city of Kisumu using substance flow analysis. Our aim was to develop Kisumu's sustainable phosphorus management framework so that the city would reduce phosphorus losses into the food system. Our results show that in the year 2023, the import and export of food phosphorus in the Kisumu food system was 2730.26 ± 2.7% t P yr-1 and 3297.05 ± 2.4% t P yr-1, respectively. There was -566.79 ± -18% t P yr-1 food phosphorus deficit in the Kisumu food system. Crop planting subsystem runoff/leaching/erosion loss, household consumption subsystem waste loss, and pit latrine subsystem blackwater loss are the major pathways of phosphorus losses into the environment and the main contributors to the food phosphorus footprint in the city. The 2030 scenario analysis shows that implementing a comprehensive scenario scheme throughout the entire lifecycle process from phosphorus input to waste disposal is the best choice for reducing phosphorus losses and suppressing the growth of food phosphorus footprint in the future. Our study shows that the food phosphorus footprint in the Kisumu food system was 0.67 kg P cap-1yr-1 in 2023, which is still at a low level but may enter a continuous upward trend with the improvement of socio-economic development of the city. In our framework, we have proposed a few essential measures that include urine separation, installation of septic tank, adjustment of dietary structure, flexible layout of sanitary disposal facilities, and separation of organic waste streams to reduce food phosphorus footprints in Kisumu. Given the similarity of cities along the shores of Lake Victoria, our calculation methods and management strategies can be applied to other cities in the region.
Collapse
Affiliation(s)
- Zheng Guo
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.G.); (G.R.K.); (W.Q.); (L.L.); (R.L.)
| | - Sophia Shuang Chen
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.G.); (G.R.K.); (W.Q.); (L.L.); (R.L.)
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Giri Raj Kattel
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.G.); (G.R.K.); (W.Q.); (L.L.); (R.L.)
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne 3052, Australia
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100190, China
| | - Wenyi Qiao
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.G.); (G.R.K.); (W.Q.); (L.L.); (R.L.)
| | - Linglong Lu
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.G.); (G.R.K.); (W.Q.); (L.L.); (R.L.)
| | - Rong Li
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.G.); (G.R.K.); (W.Q.); (L.L.); (R.L.)
| | - Anna Charles Mkumbo
- Tanzania Fisheries Research Institute, Dar es Salaam P.O. Box 750, Tanzania;
| |
Collapse
|
5
|
Morais L, Freitas BT, Fairchild TR, Clavijo Arcos RE, Guillong M, Vance D, de Campos MDR, Babinski M, Pereira LG, Leme JM, Boggiani PC, Osés GL, Rudnitzki ID, Galante D, Rodrigues F, Trindade RIF. Dawn of diverse shelled and carbonaceous animal microfossils at ~ 571 Ma. Sci Rep 2024; 14:14916. [PMID: 38942912 PMCID: PMC11213954 DOI: 10.1038/s41598-024-65671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/23/2024] [Indexed: 06/30/2024] Open
Abstract
The Ediacaran-Cambrian transition documents a critical stage in the diversification of animals. The global fossil record documents the appearance of cloudinomorphs and other shelled tubular organisms followed by non-biomineralized small carbonaceous fossils and by the highly diversified small shelly fossils between ~ 550 and 530 Ma. Here, we report diverse microfossils in thin sections and hand samples from the Ediacaran Bocaina Formation, Brazil, separated into five descriptive categories: elongate solid structures (ES); elongate filled structures (EF); two types of equidimensional structures (EQ 1 and 2) and elongate hollow structures with coiled ends (CE). These specimens, interpreted as diversified candidate metazoans, predate the latest Ediacaran biomineralized index macrofossils of the Cloudina-Corumbella-Namacalathus biozone in the overlying Tamengo Formation. Our new carbonate U-Pb ages for the Bocaina Formation, position this novel fossil record at 571 ± 9 Ma (weighted mean age). Thus, our data point to diversification of metazoans, including biomineralized specimens reminiscent of sections of cloudinids, protoconodonts, anabaritids, and hyolithids, in addition to organo-phosphatic surficial coverings of animals, demonstrably earlier than the record of the earliest known skeletonized metazoan fossils.
Collapse
Affiliation(s)
- Luana Morais
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
- Department of Geology, São Paulo State University (UNESP), Rio Claro, 13506-900, Brazil.
| | | | | | - Rolando Esteban Clavijo Arcos
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | - Marcel Guillong
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | - Derek Vance
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | | | - Marly Babinski
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Juliana M Leme
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Paulo C Boggiani
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Gabriel L Osés
- Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, São Paulo, 05508090, Brazil
- Laboratório de Arqueometria e Ciências Aplicadas ao Patrimônio Cultural, Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, São Paulo, 05508090, Brazil
| | - Isaac D Rudnitzki
- Departament of Geology, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Douglas Galante
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ricardo I F Trindade
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
6
|
Mittal M, Tripathi S, Shin DK. Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers (Basel) 2024; 16:294. [PMID: 38276702 PMCID: PMC10818902 DOI: 10.3390/polym16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Essential for human development, water is increasingly polluted by diverse anthropogenic activities, containing contaminants like organic dyes, acids, antibiotics, inorganic salts, and heavy metals. Conventional methods fall short, prompting the exploration of advanced, cost-effective remediation. Recent research focuses on sustainable adsorption, with nano-modifications enhancing adsorbent efficacy against persistent waterborne pollutants. This review delves into recent advancements (2020-2023) in sustainable biopolymeric nanocomposites, spotlighting the applications of biopolymers like chitosan in wastewater remediation, particularly as adsorbents and filtration membranes along with their mechanism. The advantages and drawbacks of various biopolymers have also been discussed along with their modification in synthesizing biopolymeric nanocomposites by combining the benefits of biodegradable polymers and nanomaterials for enhanced physiochemical and mechanical properties for their application in wastewater treatment. The important functions of biopolymeric nanocomposites by adsorbing, removing, and selectively targeting contaminants, contributing to the purification and sustainable management of water resources, have also been elaborated on. Furthermore, it outlines the reusability and current challenges for the further exploration of biopolymers in this burgeoning field for environmental applications.
Collapse
Affiliation(s)
- Mona Mittal
- Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India
| | - Smriti Tripathi
- Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India
| | - Dong Kil Shin
- School of Mechanical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|