1
|
Yan CX, Zhang S, Xu LW, Gao H, Zhang ZX, Ma W, Sun XM. Advances in multi-omics technologies for identifying metabolic engineering targets and improving lipid production in microalgae. BIORESOURCE TECHNOLOGY 2025; 429:132501. [PMID: 40204027 DOI: 10.1016/j.biortech.2025.132501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Polyunsaturated fatty acids (PUFAs), such as γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, are highly valued in the global market due to their physiological effects and health benefits. Concerns related to overfishing and marine ecosystem degradation have driven interest in microalgal lipids as a sustainable and eco-friendly alternative for PUFA production. Despite some success in commercializing microalgal lipid products, they still fail to meet global demand. Advances in high-throughput omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have deepened the understanding of lipid biosynthesis in microalgae. This review explores the potential of multi-omics approaches to elucidate PUFA biosynthesis pathways, identify key regulatory genes, and optimize metabolic engineering strategies for enhanced lipid production. Additionally, this review discusses how multi-omics technologies address challenges in large-scale cultivation, promoting the industrialization of microalgal lipid productions. These insights provide a foundation for improving microalgal PUFA yields to meet growing global demand.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Shuai Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Han Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Xu Zhang
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - Xiao-Man Sun
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Li KY, Zhou JL, Guo SY, Dou XX, Gu JJ, Gao F. Advances of microalgae-based enhancement strategies in industrial flue gas treatment: From carbon sequestration to lipid production. BIORESOURCE TECHNOLOGY 2025; 423:132250. [PMID: 39961522 DOI: 10.1016/j.biortech.2025.132250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
The acceleration of industrial development and urban expansion has led to a significant increase in flue gas emissions, posing a significant risk to human health and ecosystems. Recent studies have elucidated the significant potential of microalgae in the domain of sustainable industrial flue gas treatment. However, the inherent multifaceted factors within flue gas exert inhibitory effects on microalgal growth, thereby diminishing the overall system efficacy. Therefore, it is necessary to systematically analyze the flue gas components and propose complete intermediate treatment steps to alleviate their stressful effects on microalgae. Concurrently, to address the intrinsic limitations of the systemic functionality and enhance the applicability of microalgal biotechnology in industrial flue gas treatment, this review proposes a series of innovative solutions and strategies aimed at improving carbon fixation efficiency and lipid productivity of microalgae during flue gas treatment. In addition, the feasibility and potential limitations of these strategies in industrial applications are also discussed. Furthermore, through systematic comparative analysis, the optimal scheme and development trend of industrial flue gas emission reduction technology are explored. This comprehensive review not only establishes a theoretical foundation for the application of microalgae in industrial flue gas treatment, but also offers valuable insights for future research directions in related fields.
Collapse
Affiliation(s)
- Kai-Yuan Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Si-Yuan Guo
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Xiao-Xiao Dou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Jun-Jie Gu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316000, China.
| |
Collapse
|
3
|
Qiu J, Vadiveloo A, Mao BD, Zhou JL, Gao F. Phytohormones as a novel strategy for promoting phytoremediation in microalgae: Progress and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123593. [PMID: 39644554 DOI: 10.1016/j.jenvman.2024.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Microalgal phytoremediation is a promising bioremediation approach that can achieve significant resource recovery while effectively removing pollutants. However, the toxicity of some pollutants in wastewater often induces stress responses in microalgae, reducing their pollutant removal efficiency. Recently, phytohormones have been identified as a novel solution to reduce these stress responses, enhancing microalgae growth and improving their ability to remove various pollutants from wastewater. This advancement significantly boosts the efficiency and viability of microalgal phytoremediation. In this paper, the pathways and challenges related to microalgal phytoremediation were systematically analyzed. On this basis, the promoting effects of phytohormones on the removal of nutrients, heavy metals, and emerging contaminants by microalgae and the related mechanisms were discussed. Additionally, the review also discusses the optimal use strategy of phytohormones, the ecological risks that may be faced in the use of phytohormones, and the feasible strategies to control the use cost of phytohormones. The goal is to provide insights and guidance for future research on the application of phytohormones in microalgal phytoremediation.
Collapse
Affiliation(s)
- Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
4
|
Huang KX, Vadiveloo A, Zhou JL, Zhong H, Gao F. Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123982. [PMID: 39752947 DOI: 10.1016/j.jenvman.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) in microalgae increased as the salinity of wastewater increased from 1% to 3%, and the number of up-expressed genes was greater than that of down-expressed genes in microalgae at different salinity levels. The enrichment analysis of DEGs showed that the up-expressed genes under salt stress mainly involved in fatty acid biosynthesis and other metabolic processes, which initially revealed the mechanism of the lipid accumulation of microalgal particles in saline wastewater. In addition, the expression and functions of genes involved in lipid and EPS synthesis pathway in microalgae were analyzed, and the key genes involved in salinity affecting lipid and EPS synthesis in microalgae were preliminarily identified. The results could provide novel insight for genetic engineering to regulate the construction of lipid-rich flocculent microalgae particles.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Hua Zhong
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China.
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Li Q, Wang X, Teng Y, Yu X, Zhao Y. Gamma-aminobutyric acid as a regulator of astaxanthin production in Haematococcus lacustris under salinity: Exploring physiology, signaling, autophagy, and multi-omics landscape. BIORESOURCE TECHNOLOGY 2024; 413:131466. [PMID: 39260731 DOI: 10.1016/j.biortech.2024.131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Haematococcus lacustris-derived natural astaxanthin has significant commercial value, but stressful conditions alone impair cell growth and reduce the total productivity of astaxanthin in industrial settings. This study used gamma-aminobutyric acid (GABA) to increase biomass, astaxanthin productivity, and tolerance to salinity. GABA under NaCl stress enhanced the biomass to 1.76 g/L, astaxanthin content to 30.37 mg g-1, and productivity to 4.10 mg/L d-1, outperforming the control. Further analysis showed GABA enhanced nitrogen assimilation, Ca2+ level, and cellular GABA content, boosting substrate synthesis, energy metabolism, osmoregulation, autophagy, and antioxidant defenses. GABA also activated signaling pathways involving phytohormones, cAMP, cGMP, and MAPK, aiding astaxanthin synthesis. The application of biomarkers (ethylene, salicylic acid, trans-zeatin) and an autophagy inhibitor cooperated with GABA to further enhance the total astaxanthin productivity under NaCl stress. Combining GABA with 25 μM salicylic acid maximized astaxanthin yield at 4.79 mg/L d-1, offering new strategies for industrial astaxanthin production.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yajun Teng
- Kunming Customs Technology Center, Kunming 650228, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| |
Collapse
|
6
|
Huang KX, Vadiveloo A, Zhong H, Mao BD, Qiu J, Gao F. Enhancing the removal of sulfamethoxazole and microalgal lipid production through microalgae-biochar hybrids. BIORESOURCE TECHNOLOGY 2024; 413:131510. [PMID: 39307476 DOI: 10.1016/j.biortech.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The use of microalgae for antibiotic removal has received increasing attention due to its many advantages. However, challenges such as limited removal rates and the complexity of algae cell recovery persist. In this study, chitosan and FeCl3 modified peanut shell biochar (CTS@FeBC) was prepared for the immobilization of Chlorella pyrenoidosa. The results showed that CTS@FeBC effectively adsorbed and immobilized microalgal cells to form microalgae-biochar hybrids, resulting in higher sulfamethoxazole removal rate (45.7 %) compared to microalgae (34.4 %) or biochar (20.0 %) alone, and higher microalgal lipid yield (11.6 mg/L d-1) than microalgae alone (10.1 mg/L d-1). More importantly, the microalgae-biochar hybrids could be rapidly separated from the wastewater within 10 min by applying a magnetic field, resulting in a harvesting efficiency of 86.3 %. Overall, the microalgae-biochar hybrids hold great potential in overcoming challenges associated with pollutants removal and microalgal biomass recovery.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Hua Zhong
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China.
| | - Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
7
|
Guo G, Wang Z, Lu C, Xu W, Lu B, Zhao Y. Removal of antibiotics by four microalgae-based systems for swine wastewater treatment under different phytohormone treatment. BIORESOURCE TECHNOLOGY 2024; 400:130668. [PMID: 38583677 DOI: 10.1016/j.biortech.2024.130668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This study examined the removal of typical antibiotics from simulated swine wastewater. Microalgae-bacteria/fungi symbioses were constructed using Chlorella ellipsoidea, endophytic bacteria (S395-2), and Clonostachys rosea as biomaterials. The growth, photosynthetic performance, and removal of three types of antibiotics (tetracyclines, sulfonamides, and quinolones) induced by four phytohormones were analyzed in each system. The results showed that all four phytohormones effectively improved the tolerance of symbiotic strains against antibiotic stress; strigolactones (GR24) achieved the best performance. At 10-9 M, GR24 achieved the best removal of antibiotics by C. elliptica + S395-2 + C. rosea symbiosis. The average removals of tetracycline, sulfonamide, and quinolone by this system reached 96.2-99.4 %, 75.2-81.1 %, and 66.8-69.9 %, respectively. The results of this study help to develop appropriate bio enhancement strategies as well as design and operate algal-bacterial-fungal symbiotic processes for the treatment of antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Guojun Guo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, PR China
| | - Chang Lu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | - Wenyan Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, PR China
| | - Yongjun Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
8
|
Ge YM, Xing WC, Lu X, Hu SR, Liu JZ, Xu WF, Cheng HX, Gao F, Chen QG. Growth, nutrient removal, and lipid productivity promotion of Chlorella sorokiniana by phosphate solubilizing bacteria Bacillus megatherium in swine wastewater: Performances and mechanisms. BIORESOURCE TECHNOLOGY 2024; 400:130697. [PMID: 38614145 DOI: 10.1016/j.biortech.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.
Collapse
Affiliation(s)
- Ya-Ming Ge
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wan-Chuan Xing
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiu Lu
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shao-Rou Hu
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jun-Zhi Liu
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wei-Feng Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hai-Xiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Feng Gao
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Guo Chen
- Zhejiang Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|