1
|
MacIntosh A, Dafforn K, Chariton A, Koppel D, Cresswell T, Gissi F. Response of Microbial Communities to Naturally Occurring Radioactive Material-Contaminated Sediments: A Microcosm-Based Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1648-1661. [PMID: 38819030 DOI: 10.1002/etc.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
There is a growing need to understand the potential ecological impacts of contaminants in offshore oil and gas infrastructure, especially if that infrastructure is to be left in situ as a decommissioning option. Naturally occurring radioactive material (NORM) is one type of contaminant found in solid deposits on internal surfaces of infrastructure that poses potential ecological harm if released into the marine environment. Microbes are important components of marine sediment ecosystems because they provide ecosystem services, yet the impacts of NORM contamination to these communities are not well understood. The present study aimed to investigate the response of benthic microbial communities to NORM-contaminated scale, collected from an offshore oil and gas system, via controlled laboratory microcosm studies. Changes to microbial communities in natural sediment and sediments spiked with NORM at radium-226 activity concentrations ranging from 9.5 to 59.8 Bq/kg (in partial equilibria with progeny) over 7 and 28 days were investigated using high-throughput sequencing of environmental DNA extracted from experimental sediments. There were no significant differences in microbial community composition between control and scale-spiked sediments over 7 and 28 days. However, we observed a greater presence of Firmicutes in the scale-mixed treatment and Chloroflexi in the scale-surface treatments after 28 days. This could suggest selection for species with contaminant tolerance or potential resilience to radiation and metal toxicity. Further research is needed to explore microbial tolerance mechanisms and their potential as indicators of effects of radionuclide-contaminated sediments. The present study demonstrated that microcosm studies can provide valuable insights about the potential impacts of contamination from oil and gas infrastructure to sediment microbial communities. Environ Toxicol Chem 2024;43:1648-1661. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Amy MacIntosh
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, Sydney, New South Wales, Australia
| | - Katherine Dafforn
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, Sydney, New South Wales, Australia
| | - Anthony Chariton
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, Sydney, New South Wales, Australia
| | - Darren Koppel
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, Western Australia, Australia
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Francesca Gissi
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| |
Collapse
|
2
|
MacIntosh A, Oldfield DT, Cendón DI, Langendam AD, Howell N, Howard DL, Cresswell T. Naturally occurring radioactive materials in offshore infrastructure: Understanding formation and characteristics of baryte scale during decommissioning planning. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133506. [PMID: 38237435 DOI: 10.1016/j.jhazmat.2024.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Contaminants, including naturally occurring radioactive material (NORM) of the 238-uranium and 232-thorium decay series, have been recognized as a global research priority to inform offshore petroleum infrastructure decommissioning decisions. This study aimed to characterize pipeline scale retrieved from a decommissioned subsea well tubular pipe through high-resolution elemental mapping and isotopic analysis. This was achieved by utilizing transmission electron microscopy, Synchrotron x-ray fluorescence, photostimulated luminescence autoradiography and Isotope Ratio Mass Spectrometry. The scale was identified as baryte (BaSO4) forming a dense crystalline matrix, with heterogenous texture and elongated crystals. The changing chemical and physical microenvironment within the pipe influenced the gradual growth rate of baryte over the production life of this infrastructure. A distinct compositional banding of baryte and celestine (SrSO4) bands was observed. Radioactivity attributed by the presence of radionuclides (226Ra, 228Ra) throughout the scale was strongly correlated with baryte. From the detailed scale characterization, we can infer the baryte scale gradually formed within the internals of the tubular well pipe along the duration of production (i.e., 17 years). This new knowledge and insight into the characteristics and formation of petroleum waste products will assist with decommissioning planning to mitigate potential radiological risks to marine ecosystems.
Collapse
Affiliation(s)
- Amy MacIntosh
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Locked Bag 2001, NSW, 2232, Australia; School of Natural Sciences, Wallumattagal Campus, Macquarie University, Ryde, Sydney, NSW, Australia.
| | - Daniel T Oldfield
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Locked Bag 2001, NSW, 2232, Australia
| | - Dioni I Cendón
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Locked Bag 2001, NSW, 2232, Australia; School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Nicholas Howell
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Locked Bag 2001, NSW, 2232, Australia
| | | | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Locked Bag 2001, NSW, 2232, Australia
| |
Collapse
|