1
|
Liu T, Zhuang XX, Zheng WJ, Gao JR. Integrative Multi-Omics and Network Pharmacology Reveal the Mechanisms of Fangji Huangqi Decoction in Treating IgA Nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118996. [PMID: 39490710 DOI: 10.1016/j.jep.2024.118996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fangji Huangqi Decoction (FJHQD), a classical Chinese herbal formulation, has demonstrated significant clinical efficacy in the treatment of IgA nephropathy (IgAN), although its mechanisms remain poorly understood. AIM OF THE STUDY This study aims to investigate the renal protective mechanisms of FJHQD using an integrated approach that combines transcriptomics, proteomics, and network pharmacology. METHODS Renal glomerular structure changes were assessed via hematoxylin and eosin (H&E) and Masson staining. IgA expression in the glomeruli was quantified using immunofluorescence. Furthermore, the potential mechanisms underlying the effects of FJHQD were explored through a combined strategy of network pharmacology, transcriptomics, and proteomics. The expression of signaling pathway-related proteins was detected using Western blot. RESULTS FJHQD inhibited mesangial cell proliferation and renal interstitial fibrosis, and significantly reduced excessive IgA deposition in the glomerular mesangium. Network pharmacology identified 113 important active components and 8 common active components in FJHQD, with quercetin, isorhamnetin, jaranol, and kaempferol having the highest number of target interactions. Integration of network pharmacology with multi-omics approaches revealed that 44 active components regulated numerous immune and inflammatory signaling pathways through 17 hub targets. These pathways include the Calcium signaling pathway, cAMP signaling pathway, Ras signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway. Subsequent in vivo experiments demonstrated that FJHQD effectively regulates the identified pathways in IgAN mice. Ultimately, molecular docking results further validated the reliability of the network pharmacology combined with multi-omics analyses. CONCLUSION The findings suggest that FJHQD exerts a renal protective effect, potentially through modulation of the Calcium signaling pathway, cAMP signaling pathway, Ras signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway. These insights offer valuable support for the clinical use of FJHQD and open new avenues for exploring the active compounds and molecular mechanisms of Traditional Chinese Medicines (TCMs).
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Xing Xing Zhuang
- Department of pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, China
| | - Wen Jia Zheng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China.
| |
Collapse
|
2
|
Li A, Cui W, Zhao Y, Luo T, Zhang Q, Liu Y, Li K, Qin X, Zhang L. Exploration of the main effective constituent and the mechanism in Astragali Radix in the treatment for doxorubicin-induced nephropathy by integrating metabolomics and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116074. [PMID: 36577490 DOI: 10.1016/j.jep.2022.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge. AR was the main medicine in a Chinese traditional prescription called Fangji Huangqi Decoction, and it has been used to treating nephrotic syndrome (NS) for thousands of years in China. In recent years, AR has been evidenced to have anti-inflammatory activity, antihyperglycemic activity, antioxidant activity, etc. There are two mainstream commodities for ARs in the market including the imitation wild AR and transplanted AR. However, it is not clear whether the imitation wild AR or transplanted AR and which kind of component, astragalus saponin, astragalus flavonoid or astragalus polysaccharide, makes a bigger contribution in treating NS. And the exact molecular mechanism is not fully understood. AIM OF THE STUDY To explore which kind of AR and which kind of component in AR makes the bigger contribution in treating NS, and exploring the molecular mechanism. MATERIALS AND METHODS Firstly, HPLC-UV/ELSD was used for quantitative determination of the constituents in different ARs. Secondly, the efficacy of different ARs treating doxorubicin-induced nephropathy (DN) was compared by metabolomics. Thirdly, the protective effects of different constituents from ARs on the damage of MPC5 cells induced by adriamycin are validated. Finally, the effective constituents and mechanism of ARs against doxorubicin-induced nephropathy were investigated by network pharmacology and molecular docking. RESULTS Quantitative determination experiment and pharmacological experiment indicated that the AR produced from Gansu province (China) (transplanted AR) with a higher proportion of total saponins, has better efficacy in the treatment for DN. And the cell experiment validated the result that astragalus saponins has the better efficacy in protecting the podocyte against injury than astragalus flavonoids and polysaccharides. The network pharmacology and molecular docking study indicated that astragalus saponins were the main constituent of AR in the treatment for DN. The mechanism may involve in GnRH signaling pathway, VEGF signaling pathway and metabolic pathways, especially of bilirubin metabolism. CONCLUSIONS Transplanted AR has better efficacy in the treatment for NS than imitation wild AR, astragalus saponins have better efficacy in the treatment for NS than astragalus flavonoids and polysaccharides.
Collapse
Affiliation(s)
- Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Wenbo Cui
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China; Shanxi Health Vocational College, Taiyuan, 030006, China
| | - Yirui Zhao
- Shanxi Provincial Integrated Traditional Chinese and Western Medicine Hospital, No. 13, Fudong Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Tingting Luo
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Qingyu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China.
| | - Lichao Zhang
- Institutes of Biomedical Sciences of Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
3
|
Liu A, Xu T, Yang W, Zhou D, Sha Y. Quantitative Determination of 7 Saikosaponins in Xiaochaihu Granules Using High-Performance Liquid Chromatography with Charged Aerosol Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6616854. [PMID: 33628576 PMCID: PMC7886509 DOI: 10.1155/2021/6616854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/21/2021] [Indexed: 05/12/2023]
Abstract
Bupleuri Radix (Chaihu, in Chinese) is the principal drug in Xiaochaihu granules (XGs) that is a famous Chinese medicine preparation in China. Since previous analytical methods have not focused on the multiactive saikosaponins of Chaihu, it is difficult to effectively control the quality of XG on the market. In this manuscript, the simultaneous determination of 7 saikosaponins (saikosaponins C, I, H, A, B2, G, and B1) in XG by HPLC with charged aerosol detection (CAD) and confirmation by LC-Q-Orbitrap HRMS were described. The saikosaponins were purified on an SPE cartridge and determined on a Waters CORTECTS C18 column (4.6 mm × 150 mm, 2.7 μm) by gradient elution using 0.01% acetic acid aqueous solution and acetonitrile. The results showed good linearity with the r 2 values higher than 0.998 for all analytes. The average recoveries at three different concentration levels ranged from 80% to 109% and the intraday and interday precision (relative standard deviations, RSD%) were in the range of 1.0%∼1.9% and 1.4%∼2.1%, respectively. The established HPLC-CAD method was subsequently applied to 15 batches of XG to investigate the batch-to-batch consistency and controllability. The proposed method could potentially be used for the quality control of XG and also be helpful in the quality evaluation of Chaihu and its related preparations.
Collapse
Affiliation(s)
- Aoxue Liu
- R&D Department, GenChim Testing (Shanghai) Co. Ltd., Shanghai 200131, China
| | - Tongtong Xu
- R&D Department, GenChim Testing (Shanghai) Co. Ltd., Shanghai 200131, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dandan Zhou
- R&D Department, GenChim Testing (Shanghai) Co. Ltd., Shanghai 200131, China
| | - Yiwei Sha
- R&D Department, GenChim Testing (Shanghai) Co. Ltd., Shanghai 200131, China
| |
Collapse
|
4
|
Utilizing methylglyoxal and D-lactate in urine to evaluate saikosaponin C treatment in mice with accelerated nephrotoxic serum nephritis. PLoS One 2020; 15:e0241053. [PMID: 33104740 PMCID: PMC7588094 DOI: 10.1371/journal.pone.0241053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
The relationship between methylglyoxal (MGO) and D-lactate during saikosaponin C (SSC) treatment of mice with accelerated nephrotoxic serum (NTS) nephritis was investigated. NTS nephritis was induced by administration of anti-basement membrane antibodies to C57BL/6 mice and three dosages of SSC were administered for 14 days. Proteinuria, blood urea nitrogen, serum creatinine, renal histology, urinary MGO and d-lactate changes were examined. Compared to the NTS control group, the middle dosage (10 mg/kg/day) of SSC significantly alleviated the development of nephritis based on urine protein measurements (34.40 ± 6.85 vs. 17.33 ± 4.79 mg/day, p<0.05). Pathological observation of the glomerular basement membrane (GBM) revealed monocyte infiltration, hypertrophy, and crescents were alleviated, and injury scoring also showed improved efficacy for the middle dose of SSC during nephritis (7.92 ± 1.37 vs. 3.50 ± 1.14, p<0.05). Moreover, the significant decreases in urinary levels of MGO (24.71 ± 3.46 vs. 16.72 ± 2.36 μg/mg, p<0.05) and D-lactate (0.31 ± 0.04 vs. 0.23 ± 0.02 μmol/mg, p<0.05) were consistent with the biochemical and pathological examinations. This study demonstrates that MGO and D-lactate may reflect the extent of damage and the efficacy of SSC in NTS nephritis; further studies are required to enable clinical application.
Collapse
|
5
|
Li T, Wang J, Xie H, Hao P, Qing C, Zhang Y, Liao X, Liang T. Study on the related factors of post-herpetic neuralgia in hospitalized patients with herpes zoster in Sichuan Hospital of Traditional Chinese Medicine based on big data analysis. Dermatol Ther 2020; 33:e14410. [PMID: 33052606 DOI: 10.1111/dth.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Although various factors were reported to be related to post-herpetic neuralgia (PHN), studies based on adequate and comprehensive data were absent. Data was extracted from cases of hospitalized patients with herpes zoster in dermatology department, Sichuan hospital of traditional Chinese medicine range from December, 2011 to February, 2018, and then cleaned to build prediction model with TREENET algorithms. Following evaluated the prediction model by ROC and confusion matrix, variables importance ranking and variables dependency analysis were performed, resulting in the importance ranking of factors for PHN and the dependency between factors and PHN. Based on strict inclusion and exclusion criteria, 1303 (571 PHN and 732 normal controls) cases and 2958 indicators were selected. Model evaluation showed high ROC value (training sample = 0.985, test samples = 0.752) and high accuracy value (70.27%), which indicated that the model was predictive. After variables importance ranking and variables dependency analysis, 62 variables in the model were associated with the occurrence of PHN. Our study identified 62 variables related to PHN and revealed that various variables were the important risk factors for PHN, including age, MCHC, sodium and UA.
Collapse
Affiliation(s)
- Tianhao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jundong Wang
- National Traditional Chinese Medicine Clinical Research Bases Office, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- National Traditional Chinese Medicine Clinical Research Bases Office, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pingsheng Hao
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun Qing
- Department of Dermatology, Wuxi Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liao
- Information Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Liang
- Technical Department, ChengDu QiYue Data Technology Co., Ltd, Chengdu, China
| |
Collapse
|
6
|
Lin PY, Chen SM, Hsieh CL, Lin CY, Huang YS, Hamase K, Lee JA. Determination of temporal changes in serum and urinary lactate and 3-hydroxybutyrate enantiomers in mice with nephrotoxic serum nephritis by multi-dimensional HPLC. J Pharm Biomed Anal 2020; 188:113367. [DOI: 10.1016/j.jpba.2020.113367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
|
7
|
Zhang WN, Yang L, He SS, Qin XM, Li AP. Metabolomics coupled with integrative pharmacology reveal the protective effect of FangjiHuangqi Decoction against adriamycin-induced rat nephropathy model. J Pharm Biomed Anal 2019; 174:525-533. [PMID: 31252309 DOI: 10.1016/j.jpba.2019.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 05/11/2019] [Indexed: 01/23/2023]
Abstract
With the development of the society, the number of people who got the nephrotic syndrome (NS) is going up roughly. Therefore, finding a better way to treat NS is becoming a major global public health issue. As we all know, traditional Chinese medicine (TCM), especially Fangji Huangqi Decoction (FHD), has a long history and has good curative effects on NS. However, the mechanism of FHD treating NS has not been clearly elucidated. To address this problem, a feasible system was developed by metabolomics and integrative pharmacology approach. To study the mechanisms of Chinese medical formula FHD treating NS based on metabolomics and integrative pharmacology. In this study, a NMR based metabolomics approach coupled with biochemical assay and Western Blot had been employed to study the protective effect of FHD against adriamycin-induced nephropathy using rat model. And we proposed a integrative pharmacology-based method, which combined chemical ingredients database building, target identification and network analysis. These were aimed to decipher the mechanisms of action for the FHD in NS treatment. Multivariate analysis revealed that 13 of 16 perturbed metabolites could be reversed by FHD, and the MetaboAnalyst analysis revealed that the anti-nephrotic syndrome effect of FHD was probably related with regulation of alanine, aspartate and glutamate metabolism, citrate cycle, pyruvate metabolism, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism. The integrative pharmacology analysis revealed 93 potential targets for FHD, and suggested that the protective effect of FHD on the nephrotic syndrome was probably related with the regulation of immune, and energy metabolic and fatty acid metabolic. In addition, both the metabolomics and the integrative pharmacology are focus together on the alanine, aspartate and glutamate metabolism pathway. These metabolites changes and the core targets changes, as well as the metabolite-target pathway network provide insights into the mechanisms of FHD treating nephrotic syndrome, and further studies are needed to validate the bioactive compounds responsible for the anti-nephrotic syndrome effect of FHD.
Collapse
Affiliation(s)
- Wang-Ning Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Liu Yang
- College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Sheng-Sheng He
- College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China.
| | - Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China.
| |
Collapse
|
8
|
Metabolomics coupled with system pharmacology reveal the protective effect of total flavonoids of Astragali Radix against adriamycin-induced rat nephropathy model. J Pharm Biomed Anal 2018; 158:128-136. [DOI: 10.1016/j.jpba.2018.05.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022]
|
9
|
Yuan B, Yang R, Ma Y, Zhou S, Zhang X, Liu Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. PHARMACEUTICAL BIOLOGY 2017; 55:620-635. [PMID: 27951737 PMCID: PMC6130612 DOI: 10.1080/13880209.2016.1262433] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
CONTEXT Radix Bupleuri has been used in traditional Chinese medicine for over 2000 years with functions of relieving exterior syndrome, clearing heat, regulating liver-qi, and lifting yang-qi. More natural active compounds, especially saikosaponins, have been isolated from Radix Bupleuri, which possess various valuable pharmacological activities. OBJECTIVE To summarize the current knowledge on pharmacological activities, mechanisms and applications of extracts and saikosaponins isolated from Radix Bupleuri, and obtain new insights for further research and development of Radix Bupleuri. METHODS PubMed, Web of Science, Science Direct, Research Gate, Academic Journals and Google Scholar were used as information sources through the inclusion of the search terms 'Radix Bupleuri', 'Bupleurum', 'saikosaponins', 'Radix Bupleuri preparation', and their combinations, mainly from the year 2008 to 2016 without language restriction. Clinical preparations containing Radix Bupleuri were collected from official website of China Food and Drug Administration (CFDA). RESULTS AND CONCLUSION 296 papers were searched and 128 papers were reviewed. A broad spectrum of in vitro and in vivo research has proved that Radix Bupleuri extracts, saikosaponin a, saikosaponin d, saikosaponin c, and saikosaponin b2, exhibit evident anti-inflammatory, antitumor, antiviral, anti-allergic, immunoregulation, and neuroregulation activities mainly through NF-κB, MAPK or other pathways. 15 clinical preparations approved by CFDA remarkably broaden the application of Radix Bupleuri. The main side effect of Radix Bupleuri is liver damage when the dosage is excess, which indicates that the maximum tolerated dose is critical for clinical use of Radix Bupleuri extract and purified compounds.
Collapse
Affiliation(s)
- Bochuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yongsheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaodong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Ying LiuSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Wangjing Zhonghuan South Street, Chaoyang District, Beijing100102, China
| |
Collapse
|
10
|
Feng L, Liu L, Zhao Y, Zhao R. Saikosaponins A, C and D enhance liver-targeting effects of anticancer drugs by modulating drug transporters. Oncotarget 2017; 8:110092-110102. [PMID: 29299132 PMCID: PMC5746367 DOI: 10.18632/oncotarget.22639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
Vinegar-baked Radix Bupleuri (VBRB) is clinically used to enhance the pharmacological activity of drugs used to treat liver diseases. Our previous study demonstrated that this effect is dependent on increased drug accumulation in the liver; however, the underlying mechanism remains unclear. We hypothesize that VBRB mediated its effects by altering drug transporters. Thus, the present study was designed to determine the effects of VBRB's main components, saikosaponin A, C, and D, on drug transporters. Transporter activity was determined by measuring the intracellular concentration of transporter substrates. Protein and mRNA levels were measured by Western blot and qPCR, respectively. Colchicine was used as the substrate for P-glycoprotein (Pgp) and multidrug resistance protein (MRP) 1, cisplatin was used as the substrate for Mrp2 and organic cation transporters 2 (Oct2), and verapamil and MK571 were used as inhibitors of Pgp and MRP1, respectively. Saikosaponin A, C, and D differentially affected transporter activity. All of the saikosaponins inhibited Pgp activity in Pgp over-expressing HEK293 cells and increased substrate uptake of OCT2 in OCT2 over-expressing HEK293. Saikosaponin C and D inhibited MRP2 activity in HEK293 cells and BRL 3A cell with high MRP2 expression; saikosaponin A increased colchicine accumulation in GSH-stimulated HEK293 cells, but decreased colchicine uptake in HEK293 cells. Saikosaponin D inhibited MRP1 activity in GSH-stimulated HEK293 cells, but marginally affected the uptake of colchicine in HEK293 cells. In conclusion, saikosaponins play a role in VBRB's induced liver targeting effect through affecting drug transporters with a transporter expression amount depending manner.
Collapse
Affiliation(s)
- Limin Feng
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Liu
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ya Zhao
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, China
| |
Collapse
|
11
|
Xu XH, Li T, Fong CMV, Chen X, Chen XJ, Wang YT, Huang MQ, Lu JJ. Saponins from Chinese Medicines as Anticancer Agents. Molecules 2016; 21:molecules21101326. [PMID: 27782048 PMCID: PMC6272920 DOI: 10.3390/molecules21101326] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Saponins are glycosides with triterpenoid or spirostane aglycones that demonstrate various pharmacological effects against mammalian diseases. To promote the research and development of anticancer agents from saponins, this review focuses on the anticancer properties of several typical naturally derived triterpenoid saponins (ginsenosides and saikosaponins) and steroid saponins (dioscin, polyphyllin, and timosaponin) isolated from Chinese medicines. These saponins exhibit in vitro and in vivo anticancer effects, such as anti-proliferation, anti-metastasis, anti-angiogenesis, anti-multidrug resistance, and autophagy regulation actions. In addition, related signaling pathways and target proteins involved in the anticancer effects of saponins are also summarized in this work.
Collapse
Affiliation(s)
- Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chi Man Vivienne Fong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
12
|
Zhao Y, Wang YJ, Zhao RZ, Xiang FJ. Vinegar amount in the process affected the components of vinegar-baked Radix Bupleuri and its hepatoprotective effect. Altern Ther Health Med 2016; 16:346. [PMID: 27599678 PMCID: PMC5011866 DOI: 10.1186/s12906-016-1333-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/31/2016] [Indexed: 11/10/2022]
Abstract
Background Bupleuri Radix (in Chinese Chaihu), the dried roots of Bupleurum Chinense DC, is a traditional Chinese medicine widely used to treat fever, hepatitis, jaundice, nephritis, dizziness. When baked with vinegar, its effect is more focused on liver related disease. This paper was undertaken to determine the best vinegar amount in the processing and explore its key efficacy components. Methods Hepatoprotective effects of Radix Bupleuri after processing with different amount of vinegar (1:5, 2:5, 3:5) were investigated on liver hurt rats, and the change of constituents were analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Results With the increasing amount of vinegar, the hepatoprotective effects of vinegar-baked Radix Bupleuri (VBRB) and the content of saikosaponin b2 increased. Conclusion These results suggested that vinegar amount in the process affected the pharmacological effect of VBRB significantly and saikosaponin b2 may be the key efficacy component of it.
Collapse
|
13
|
Yao RY, Zou YF, Chen XF. Traditional Use, Pharmacology, Toxicology, and Quality Control of Species in Genus Bupleurum L. CHINESE HERBAL MEDICINES 2013; 5:245-255. [PMID: 32288759 PMCID: PMC7129159 DOI: 10.1016/s1674-6384(13)60036-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Many species of genus Bupleurum L. have been pharmaceutically used mainly in Asia and Europe for thousand years. Their roots are the most popular ingredients in Chinese materia medica prescriptions for the treatment of inflammatory diseases and auto-immune diseases. A plenty of chemical constituents have been isolated and identified from the species in Bupleurum L., such as saikosaponins, polysaccharides, volatile oils, flavonoids, polyacetylenes, lignins, and coumarins, most of which possess a variety of biological activities, especially for the hepatoprotective effect, antitumor activity, immunoregulation, and febrifuge efficacy. Therefore, the species in genus Bupleurum L. could be potential herbs of immunomodulator, antineoplastic, anti-oxidant, etc. Meanwhile, as potential toxicities have been discovered in some constituents, it is urgent to establish a comprehensive quality evaluation system to ensure the safety and efficiency of herbs. This paper reviews on the phytochemical and pharmacological studies, especially for the toxicology and quality control of the species in Bupleurum L., which is a reference for the species in this genus for safe usage and further development.
Collapse
Affiliation(s)
- Ru-Yu Yao
- Agronomy College of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130, China
| | - Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Xing-Fu Chen
- Agronomy College of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
14
|
Liu G, Tian Y, Li G, Xu L, Song R, Zhang Z. Metabolism of saikosaponin a in rats: diverse oxidations on the aglycone moiety in liver and intestine in addition to hydrolysis of glycosidic bonds. Drug Metab Dispos 2012; 41:622-33. [PMID: 23277344 DOI: 10.1124/dmd.112.048975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main objective of the present study was to completely characterize the metabolites of the triterpenoid saikosaponin a (SSa) in rats. To this aim, we compared the metabolites in plasma, bile, urine, and feces samples following oral and i.v. routes of administration using liquid chromatography-diode array detector coupled with hybrid ion trap-time-of-flight mass spectrometry. As a result, besides 2 known metabolites, prosaikogenin f and saikogenin f, 15 new metabolites were detected in all. It was found that SSa is metabolized mainly in phase I manner, i.e., hydration and monooxidation on the aglycone moiety and hydrolysis of the β-glucosidic bond in the liver, and sequential hydrolysis of β-glucosidic and β-fucosidic bonds followed by dehydrogenation, hydroxylation, carboxylation, and combinations of these steps on the aglycone moiety in the intestinal tract. Both the renal and biliary routes were observed for the excretion of SSa and its metabolites. Further, a clear metabolic profile in rats was proposed in detail according to the results from the in vivo animal experiment after different routes of administration. Our results update the preclinical metabolism and disposition data on SSa, which is not only helpful for the future human metabolic study of this compound but also provides basic information for better understanding of the efficacy and safety of prescriptions containing saikosaponins.
Collapse
Affiliation(s)
- Guoqiang Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|
15
|
Fast and sensitive LC-DAD-ESI/MS method for analysis of saikosaponins c, a, and d from the roots of Bupleurum Falcatum (Sandaochaihu). Molecules 2011; 16:1533-43. [PMID: 21317843 PMCID: PMC6259614 DOI: 10.3390/molecules16021533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 11/23/2022] Open
Abstract
In the present study, we developed a liquid chromatography-diode array detector-electrospray ionization/mass spectrometric (LC-DAD-ESI/MS) method for analysis of saikosaponins in Bupleurum falcatum. The LC method employed a ZORBAX SB-Aq analytical column (150 × 4.6 mm i.d., 5 μm) at a flow rate of 0.8 mL/min coupled with a diode array detector at 204 nm. A step gradient of acetonitrile-water (v/v) containing 0.5% formic acid from 30 to 70% was applied, leading to a sample analysis time of 30 min. The ESI-MS was carried out in positive and negative modes from 500 to 1,500 m/z. Saikosaponins c, a, and d gave strong sodium adducts at m/z 949.6, 803.5 and 803.6, respectively, in positive mode. The data indicate that the present LC-DAD-ESI/MS assay is an effective method for the determination of saikosaponins c, a and d from the roots of Bupleurum falcatum.
Collapse
|
16
|
Abstract
Objectives Radix Bupleuri represents one of the most successful and widely used herbal drugs in Asia for treatment of many diseases over the past 2000 years. Thorough studies have been carried out on many species of this genus and have generated immense data about the chemical composition and corresponding biological activity of extracts and isolated secondary metabolites. In this work, we review the chemistry and pharmacology of the genus Bupleurum and explore the relationships between the pharmacological effects and the chemical composition of these drugs. Key findings Early studies on the genus Bupleurum had focused only on the traditional uses of the plants in the treatment of inflammatory disorders and infectious diseases. After chemical profiling, several groups of secondary metabolites were characterized with relevant biological activity: triterpene saponins (saikosaponins), lignans, essential oils and polysaccharides. As a result, present interest is now focused on the bioactivity of the isolated triterpene saponins acting as immunomodulatory, anti‐inflammatory and antiviral agents, as well as on the observed ant‐iulcer activity of the polysaccharides and anti‐proliferative activity of different lignans. Many saikosaponins exhibited very potent anti‐inflammatory, hepatoprotective and immunomodulatory activities both in vivo and in vitro. Conclusions Further investigations and screenings are required to explore other Bupleurum species, to evaluate the clinical safety and possible interactions with other drugs or herbs. Standardization of Bupleuri extracts is crucial for them being integrated into conventional medicine due to large chemical and biological variations between different species and varieties.
Collapse
Affiliation(s)
- Mohamed L Ashour
- Institute of Pharmacy and Molecular Biotechnology, University Heidelberg, Im Neuenheimer Feld 364, Heidelberg, Germany
| | | |
Collapse
|
17
|
Li W, Liu Z, Wang Z, Chen L, Sun Y, Hou J, Zheng Y. Application of accelerated solvent extraction to the investigation of saikosaponins from the roots of Bupleurum falcatum. J Sep Sci 2010; 33:1870-6. [PMID: 20491056 DOI: 10.1002/jssc.200900854] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Accelerated solvent extraction (ASE) was applied to the extraction of saikosaponin a, saikosaponin c and saikosaponin d from the roots of Bupleurum falcatum. Main extraction parameters such as the extraction solvents, extraction temperature and static extraction time were investigated and optimized. The optimized procedure employed 70% methanol as extraction solvent, 120 degrees C of extraction temperature, 10 min of static extraction time, 60% of flush volume and the extraction recoveries of the three compounds were near to 100% with one extraction cycle. The extracted samples were analyzed by HPLC with UV detector. The HPLC conditions were as follows: Hypersil ODS2 (4.6 mmx250 mm, 5 microm) column, acetonitrile and water as mobile phase, flow rate of 1.0 mL/min, UV detection wavelength of 204 nm and injection volume of 20 microL. Compared with the traditional methods including heat-reflux extraction and ultrasonic-assisted extraction, the proposed ASE method was more efficient and faster to be operated. The results indicated that ASE was an alternative method for extracting saikosaponins from the roots of B. falcatum.
Collapse
Affiliation(s)
- Wei Li
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, PR China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Eom HY, Park SY, Kim MK, Suh JH, Yeom H, Min JW, Kim U, Lee J, Youm JR, Han SB. Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins. J Chromatogr A 2010; 1217:4347-54. [PMID: 20452602 DOI: 10.1016/j.chroma.2010.04.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 11/17/2022]
Abstract
Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B(1), -B(2), -B(3), -B(4), -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis Express C18 column (100 mm x 4.6 mm, 2.7 microm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD.
Collapse
Affiliation(s)
- Han Young Eom
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|