1
|
Al-Naqeb G, Pietrolucci F, Commisso M, Kalmpourtzidou A, Oldani A, Boussetta S, Maccarini B, De Giuseppe R, Cena H. Metabolomic Profiling and In Vitro Evaluation of Cytotoxic, Genotoxic, and Antigenotoxic Effects of Staphylea pinnata L. Extract from Italian Flora. Biomolecules 2025; 15:385. [PMID: 40149921 PMCID: PMC11940221 DOI: 10.3390/biom15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Staphylea pinnata L., (S. pinnata), has long been recognized in Europe as both a wild food source and a traditional medicinal. This study aimed to characterize the metabolomic profile of the leaf extract of S. pinnata and assess its cytotoxic, genotoxic, and antigenotoxic effects in vitro for the first time. The methanolic extract of the leaves was analyzed using Ultra-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS). To evaluate its cytotoxic, genotoxic, and antigenotoxic properties, the cytokinesis block micronucleus assay was performed on Chinese hamster ovarian K1 cells. The analysis revealed a wide variety of metabolites in the extract, with B-type procyanidins and prodelphinidins being the most abundant. The genotoxicity of the extract varied depending on its concentration; at the lowest concentration (75 μg/mL), it showed no genotoxic effects and exhibited antigenotoxic properties by reducing the frequency of micronuclei induced by mitomycin C. However, at the highest concentration (300 μg/mL), the extract demonstrated genotoxic effects. In conclusion, the S. pinnata extract displayed both genotoxic and antigenotoxic properties, which may be attributed to its phytochemical composition. These findings highlight the complex nature of the plant's bioactive compounds, suggesting potential therapeutic applications with careful consideration of dosage. Additional research is necessary to understand the mechanisms underlying these properties.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (S.B.); (B.M.); (R.D.G.); (H.C.)
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a P.O. Box 1247, Yemen
| | - Fabio Pietrolucci
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (F.P.); (M.C.)
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (F.P.); (M.C.)
| | - Aliki Kalmpourtzidou
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (S.B.); (B.M.); (R.D.G.); (H.C.)
| | - Amanda Oldani
- PASS-Bio Med, Centro Grandi Strumenti, University of Pavia, 27100 Pavia, Italy;
| | - Sara Boussetta
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (S.B.); (B.M.); (R.D.G.); (H.C.)
| | - Beatrice Maccarini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (S.B.); (B.M.); (R.D.G.); (H.C.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (S.B.); (B.M.); (R.D.G.); (H.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (A.K.); (S.B.); (B.M.); (R.D.G.); (H.C.)
- Clinical Nutrition Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
2
|
Al-Naqeb G, Kalmpourtzidou A, Giampieri F, De Giuseppe R, Cena H. Genotoxic and antigenotoxic medicinal plant extracts and their main phytochemicals: "A review". Front Pharmacol 2024; 15:1448731. [PMID: 39679368 PMCID: PMC11637852 DOI: 10.3389/fphar.2024.1448731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Many medicinal plant extracts have been proven to have significant health benefits. In contrast, research has shown that some medicinal plant extracts can be toxic, genotoxic, mutagenic, or carcinogenic. Therefore, evaluation of the genotoxicity effects of plant extracts that are used as traditional medicine is essential to ensure they are safe for use and in the search for new medication. This review summarizes 52 published studies on the genotoxicity of 28 plant extracts used in traditional medicine. A brief overview of the selected plant extracts, including, for example, their medicinal uses, pharmacological effects, and primary identified compounds, as well as plant parts used, the extraction method, genotoxic assay, and phytochemicals responsible for genotoxicity effect were provided. The genotoxicity effect of selected plant extracts in most of the reviewed articles was based on the experimental conditions. Among different reviewed studies, A total of 6 plant extracts showed no genotoxic effect, other 14 plant extracts showed either genotoxic or mutagenic effect and 14 plant extracts showed anti-genotoxic effect against different genotoxic induced agents. In addition, 4 plant extracts showed both genotoxic and non-genotoxic effects and 6 plant extracts showed both genotoxic and antigenotoxic effects. While some suggestions on the responsible compounds of the genotoxicity effects were proposed, the proposed responsible phytochemicals were not individually tested for the genotoxicity potential to confirm the findings. In addition, the mechanisms by which most plant extracts exert their genotoxicity effect remain unidentified. Therefore, more research on the genotoxicity of medicinal plant extracts and their genotoxicity mechanisms is required.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a, Yemen
| | - Aliki Kalmpourtzidou
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
3
|
Sohn E, Kim BY, Kim YJ, Jeong SJ. Non-clinical safety assessment of Annona atemoya leaf extract: evaluation of genotoxicity. Toxicol Res 2024; 40:473-485. [PMID: 38911544 PMCID: PMC11187046 DOI: 10.1007/s43188-024-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/25/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
The leaves, stems, and fruits of Annona atemoya (A. atemoya; AA), a fruit-bearing plant of the family Annonaceae, exhibit anti-angiogenic, anti-oxidative, anti-inflammatory, and neuroprotective activities. However, the safety of AA has not been comprehensively elucidated. In this study, we evaluated the potential genotoxicity of an AA leaf (AAL) ethanol extract using a standard three-test battery constituting in vitro mammalian chromosomal aberration, in vivo micronucleus, and bacterial reverse mutation (also known as the Ames test) tests, as recommended by the Ministry of Food and Drug Safety of Korea. In vitro chromosomal aberration assay revealed that AAL extract did not induce structural or numerical aberrations, with or without metabolic activation (S9). In vivo micronucleus assay revealed that the number of micronucleated polychromatic erythrocytes (PCEs) and the PCE/normochromatic erythrocyte ratio after AAL extract treatment were not substantially different from those in the negative control. Changes in body weight and mortality were not observed. However, AAL extract partially induced mutagenic activity in all three bacterial strains in the bacterial reverse mutation assay, indicating that it could potentially aid in determining the genotoxic safety of AAL. QuantSeq 3' mRNA sequencing analysis to elucidate the genotoxicity mechanisms of AAL extract using TK6 cells revealed that the genotoxic effects of AAL may be associated with cellular morphology-associated (cell development and keratinization), nucleotide metabolism, and electron transport chain functions. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00241-4.
Collapse
Affiliation(s)
- Eunjin Sohn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054 Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054 Republic of Korea
| | - Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054 Republic of Korea
| | - Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054 Republic of Korea
| |
Collapse
|
4
|
Yadav V, Krishnan A, Zahiruddin S, Ahmad S, Vohora D. Amelioration of cyclophosphamide-induced DNA damage, oxidative stress, and hepato- and neurotoxicity by Piper longum extract in rats: The role of γH2AX and 8-OHdG. Front Pharmacol 2023; 14:1147823. [PMID: 36969834 PMCID: PMC10036401 DOI: 10.3389/fphar.2023.1147823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Background: The identification of genoprotectants is a promising strategy for improving human health. Piper longum has drawn scientific attention because of its diverse biological effects and traditional utilization. The current investigation aims to evaluate the genome-stabilizing potential of Piper longum against cyclophosphamide-associated genotoxicity. Methods: We adopted a funnel screening with a three-tier evaluation approach, where Piper longum was investigated in an acellular medium, peripheral blood lymphocytes, and a rodent model. The genoprotective action of the Piper longum extract was initially performed with plasmid pBluescript SK(-) DNA. Furthermore, the extract and various fractions were screened against cyclophosphamide-induced genotoxicity using a cytokinesis-block micronucleus assay and a chromosomal aberration assay in human peripheral blood lymphocytes. The genome-stabilizing action of the extract and potent (hexane) fraction was further confirmed in vivo in Wistar albino rats by evaluating them using mammalian erythrocyte micronucleus tests, DNA fragmentation, oxidative stress markers, 8-hydroxy-2-deoxyguanosine (8-OHdG), γH2AX, and histopathological lesions in the liver and hippocampus. Additionally, acute and sub-acute toxicity studies were conducted following the Organization for Economic Co-operation and Development (OECD) guidelines for rats. Furthermore, the extract was quantified and characterized by high-performance thin-layer chromatography (HPTLC), ultra-high performance liquid chromatography-mass spectroscopy (UPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Results: The Piper longum ethanol extract was shown to protect plasmid pBluescript SK(-) DNA against H2O2-induced strand breaks. In human lymphocytes, the extract and hexane fraction showed a reduction in micronucleus formation (p < 0.001) and chromosomal aberrations (p < 0.01) against cyclophosphamide. Furthermore, the extract and fraction treatment, when administered at 200 mg/kg for 28 days in Wistar rats, restored cyclophosphamide-induced genomic instability by reducing micronucleus formation and DNA fragmentation; restoring redox homeostasis; decreasing 8-OHdG, a hallmark of oxidative DNA damage; reducing γH2AX, a DNA double-strand break (DSB) marker; and preserving the liver and hippocampus against histopathological lesions. The extract and fraction revealed no signs of systemic toxicity at the used doses. Piperine and piperlongumine are the major alkaloids quantified along with the presence of flavonoids in the ethanol extract and the presence of fatty acids and terpenoids in the hexane fraction of Piper longum. Conclusion: Our investigation confirms the genoprotective action of Piper longum by reducing cyclophosphamide-associated cytogenotoxicity, oxidative stress, hepato- and neurotoxicity, oxidative DNA damage, and DNA double-strand breaks. The outcomes are critical for mitigating the genotoxic effects of chemotherapy recipients, requiring further attention.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard University, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
5
|
Modak BK, Gorai P, Pandey DK, Dey A, Malik T. An evidence based efficacy and safety assessment of the ethnobiologicals against poisonous and non-poisonous bites used by the tribals of three westernmost districts of West Bengal, India: Anti-phospholipase A2 and genotoxic effects. PLoS One 2020; 15:e0242944. [PMID: 33253320 PMCID: PMC7703885 DOI: 10.1371/journal.pone.0242944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION To explore the ethnobiological wisdom of the tribals of three western districts of West Bengal, India against poisonous and non-poisonous bites and stings, a quantitative approach was adopted. These age-old yet unexplored knowledge can be utilized in finding lead-molecules against poisonous and non-poisonous animal-bites. Further, an evidence-based approach is needed to assess the venom-neutralization ability of plants by experimental studies. MATERIALS AND METHODS During 2008-2009 and 2012-2017, 11 ethnomedicinal surveys were carried out to explore the use of medicinal flora and fauna via conducting open semi-structured interviews with 47 traditional healers (THs) or informants. The retrieved dataset was statistically evaluated using seven quantitative-indexes: use-value (UV), informants'-consensus-factor (ICF), fidelity-level (FL), relative-importance (RI), cultural importance-index (CI), index of agreement on remedies (IAR) and cultural agreement-index (CAI). Anti-phospholipaseA2 (PLA2) properties of selected plant extracts were also examined. In addition, the cytotoxicity and genotoxicity of the water extract of the plants showing high FL as well as significant PLA2 inhibitory potential were investigated using Allium cepa root tip assay. RESULTS A total of 41 traditional-formulations (TFs) containing 40 plant species (of 39 genera from 28 families) and 3 animal species were prescribed by the THs. Fabaceae exhibited most number of medicinal plants. Piper nigrum (1.78) and Apis cerana indica and Crossopriza lyoni (both 0.21) exhibited the highest UV among the plants and the animals respectively. Stinging of centipede and dog/cat/hyena bite displayed highest ICF (1.00 each). Among the plants, the maximum RI (0.91) and CI (4.98) values were observed for Aristolochia indica. IAR (1.00) was recorded maximum for Achyranthes aspera, Gloriosa superba, Lycopodium cernuum, Smilax zeylanica and Streblus asper. Maximum CAI value was noted for Piper nigrum (5.5096). Among the animals, Apis cerana indica (0.31) and Crossopriza lyoni (1.52) displayed the highest RI and CI values respectively. Crossopriza lyoni (0.99) and Apis cerana indica (1.3871) exhibited maximum IAR and CAI values respectively. Plants showing higher FL exhibited higher anti-PLA2 activity via selective inhibition of human-group PLA2. In addition, Allium cepa root tip assay has indicated the safety and/or toxicity of the plant parts prescribed by the THs. Root water extracts of Aristolochia indica and Gloriosa superba exhibited significant genotoxicity and cytotoxicity. CONCLUSIONS Three western districts of West Bengal is the natural abode for many tribal and non-tribal communities. A noteworthy correlation was established between the plants used against poisonous-bites and their anti-PLA2 activity. A few plant parts used by the THs also exhibited high toxicity. Such alternative medical practices serve as the only option in these underprivileged and backward areas during medical-exigencies.
Collapse
Affiliation(s)
- Biplob Kumar Modak
- Department of Zoology, Sidho-Kanho-Birsha University, Lagda, West Bengal, India
| | - Partha Gorai
- Department of Zoology, Sidho-Kanho-Birsha University, Lagda, West Bengal, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Tabarak Malik
- Department of Medical Biochemistry, College of Medicine & Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Nandy S, Mukherjee A, Pandey DK, Ray P, Dey A. Indian Sarsaparilla (Hemidesmus indicus): Recent progress in research on ethnobotany, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112609. [PMID: 32007632 DOI: 10.1016/j.jep.2020.112609] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemidesmus indicus (L.) R. Br. ex Schult. (Apocynaceae) is widely used in traditional medicine in the different parts of the Indian subcontinent due to the various biological activities attributed to its different parts, especially the roots. It has traditionally been used for treating snakebites, scorpion stings, diabetes, urinary diseases, dyspnea, menorrhagia, oligospermia, anorexia, fever, abdominal colic and pain, dysentery, diarrhea, cough, rheumatism, headache, inflammation, pyrosis, skin diseases, leprosy, sexually transmitted diseases and cancer. In Ayurveda, the plant is used in the treatment of bone-loss, low body weight, fever, stress, topical wound and psoriasis. Besides, Ayurvedic literature also depicts its use as anti-atherogenic, anti-spasmodic, memory enhancing, immunopotentiating and anti-inflammatory agents. AIM OF THE STUDY In this review, we aim to present a comprehensive update on the ethnopharmacology, phytochemistry, specific pharmacology, and toxicology of H. indicus and its bioactive metabolites. Possible directions for future research are also outlined in brief. MATERIALS AND METHODS Popular and widely used international databases such as PubMed, Scopus, Science Direct, Google Scholar and JSTOR were searched and traditional literature were consulted using the various search strings to retrieve a number of citations related to the ethnopharmacology, biological activity, toxicology, quality control and phytochemistry of H. indicus. All studies on the ethnobotany, phtochemistry, pharmacology, and toxicology of the plant up to 2019 were included in this review. RESULTS H. indicus has played an important role in traditional Indian medicine (including Ayurveda) and also in European medicine. The main pharmacological properties of H. indicus include hepatoprotective, anti-cancer, anti-diabetic, antioxidant, neuroprotective, anti-ophidian, cardioprotective, nephroprotective, anti-ulcerogenic, anti-inflammatory, and antimicrobial properties. Phytochemical evaluations of the root have revealed the presence of aromatic aldehydes and their derivatives, phenolics, triterpenoids and many other compounds, some of which were attributed to its bioactivity. This review also compiles a list of Ayurvedic formulations and commercial preparations where H. indicus has been used as an active ingredient. We have included the critical assessment of all the papers cited in this manuscript based on experimental observation and other important points which reflect the loop-holes of research strategy and ambiguity in the papers reviewed in this manuscript. CONCLUSIONS The study presents an exhaustive and updated review on the traditional, pharmacological and phytochemical aspects of H. indicus with notes on its quality control and toxicological information. Although the crude extracts of H. indicus exhibit an array of pharmacological activities, it is high time to identify more active phyto-constituents by bioactivity-guided isolation besides elucidating their structure-activity relationship. More designed investigations are needed to comprehend the multi-target network pharmacology, to clarify the molecular mode of action and to ascertain the efficacious doses of H. indicus. Moreover, H. indicus is not fully assessed on the basis of its safety and efficacy on human. We hope this review will compile and improve the existing knowledge on the potential utilization of H. indicus in complementary and alternative medicine.
Collapse
Affiliation(s)
- Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
7
|
Al-Eitan LN, Alzoubi KH, Al-Smadi LI, Khabour OF. Vitamin E protects against cisplatin-induced genotoxicity in human lymphocytes. Toxicol In Vitro 2019; 62:104672. [PMID: 31629897 DOI: 10.1016/j.tiv.2019.104672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/01/2023]
Abstract
Cisplatin is an anticancer drug that is widely used in treatments of human malignancies such as ovaries,' testes,' and solid tumors of the head and neck. However, the use of cisplatin in the treatments can be associated with DNA damage and high risk to the development of secondary malignancies. Vitamin E is a strong lipophilic antioxidant that has the ability to protect normal cells from chromosomal damage and promote the repair of the damaged DNA. In the current study, the possible protective effect of vitamin E on DNA damage induced by cisplatin was investigated. For that, chromosomal aberrations (CAs) frequency and the number of sister chromatid exchanges (SCEs) were measured in cultured human lymphocytes. Results showed that cisplatin statistically significant increases in the number of cells with CAs (P < 0.05) and in the frequency of SCEs (P < 0.05) as compared to the control group. These increases were significantly lowered by pretreatment of cells with vitamin E. Additionally, cisplatin reduced mitotic index at used concentrations (P < 0.05), which was normalized by vitamin E. Therefore, we conclude that vitamin E can prevent the genotoxicity of cisplatin on cultured human lymphocyte.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, 22110 Irbid, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, 22110 Irbid, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, 22110 Irbid, Jordan.
| | - Lara I Al-Smadi
- Department of Applied Biological Sciences, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, 22110 Irbid, Jordan.
| |
Collapse
|
8
|
Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zain SR, Alshawsh MA. Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley Rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:88-99. [PMID: 30738113 DOI: 10.1016/j.jep.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Verbena officinalis L. has been used for reproductive and gynaecological purposes. However, the mutagenicity and genotoxicity of V. officinalis have not been extensively investigated. AIM OF THE STUDY To assess the in vitro mutagenicity and in vivo genotoxicity of aqueous extract of V. officinalis leaves using a modified Ames test and rat bone marrow micronucleus assay according to OECD guidelines. MATERIALS AND METHODS In vitro Ames test was carried out using different strains of Salmonella (TA97a, TA98, TA100, and TA1535) and Escherichia coli WP2 uvrA (pKM101) in the presence or absence of metabolic activation (S9 mixture). For micronucleus experiment, male and female Sprague-Dawley rats (n = 6/group) were received a single oral daily dose of 500, 1000, and 2000 mg/kg of V. officinalis extract for three days. Negative and positive control rats were received distilled water or a single intraperitoneal injection of 50 mg/kg of cyclophosphamide, respectively. Following dissection, femurs were collected and bone marrow cells were stained with May-Grünwald-Giemsa solution for micronucleus assessment. RESULTS Ames test results demonstrated that 5, 2.5, 1.25 and 0.625 mg/ml of V. officinalis extract induced a significant mutagenic effect against TA100 and TA98 strains (with and without metabolic activation). Findings of the animal study showed there were no significant increase in the micronucleated polychromatic erythrocytes (MNPE) and no significant alterations in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio of treated rats as compared with their negative control. Meanwhile, significantly increased in the MNPEs was seen in the cyclophosphamide-treated group only. CONCLUSION Aqueous extract of V. officinalis has mutagenic effect against TA98 and TA100 strains as demonstrated by Ames test, however, there is no in vivo clastogenic and myelotoxic effect on bone marrow micronucleus of rats indicating that the benefits of using V. officinalis in traditional practice should outweigh risks.
Collapse
Affiliation(s)
- Abdulmannan H Fateh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Abdulsamad Alsalahi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Rosmani Md Zain
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
9
|
Antioxidant Activity and Genotoxic Assessment of Crabwood (Andiroba, Carapa guianensis Aublet) Seed Oils. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3246719. [PMID: 29854079 PMCID: PMC5954914 DOI: 10.1155/2018/3246719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
The seed oil of Carapa guianensis (Aublet), a tree from the Meliaceae family commonly known as andiroba, is widely used in Brazilian traditional medicine because of its multiple curative properties against fever and rheumatism and as an anti-inflammatory agent, antibacterial agent, and insect repellant. Since there is no consensus on the best way to obtain the C. guianensis oil and due to its ethnomedicinal properties, the aim of the present research was to evaluate the chemical composition, free-radical scavenging activity, and mutagenic and genotoxicity properties of three C. guianensis oils obtained by different extraction methods. The phenolic contents were evaluated by spectrophotometry. Oil 1 was obtained by pressing the dried seeds at room temperature; oil 2 was obtained by autoclaving, drying, and pressing; oil 3 was obtained by Soxhlet extraction at 30–60°C using petroleum ether. The oil from each process presented differential yields, physicochemical properties, and phenolic contents. Oil 1 showed a higher scavenging activity against the DPPH radical when compared to oils 2 and 3, suggesting a significant antioxidant activity. All oils were shown to be cytotoxic to bacteria and to CHO-K1 and RAW264.7 cells. At noncytotoxic concentrations, oil 2 presented mutagenicity to Salmonella enterica serovar Typhimurium and induced micronuclei in both cell types. Under the same conditions, oil 3 also induced micronucleus formation. However, the present data demonstrated that oil 1, extracted without using high temperatures, was the safest for use as compared to the other two oils, not showing mutagenicity or micronucleus induction.
Collapse
|
10
|
In Vitro Study of the Cytotoxic, Cytostatic, and Antigenotoxic Profile of Hemidesmus indicus (L.) R.Br. (Apocynaceae) Crude Drug Extract on T Lymphoblastic Cells. Toxins (Basel) 2018; 10:toxins10020070. [PMID: 29415441 PMCID: PMC5848171 DOI: 10.3390/toxins10020070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022] Open
Abstract
In traditional Indian medicine, the crude drug Hemidesmus indicus root—commonly known as Indian sarsaparilla—is used alone or in poly-herbal preparations for the treatment of a wide range of diseases. The present study focuses on the cancer chemopreventive and therapeutic potential of H. indicus extracts on an acute lymphoblastic leukemia cell line (CCRF-CEM). With this aim in mind, we subjected H. indicus roots to two subsequent extractions (hydro-alcoholic extraction and soxhlet extraction). As DNA damage is an important prerequisite for the induction of mutations/cancer by genotoxic carcinogens, cancer chemoprevention may be achieved by preventing genotoxicity. Through an integrated experimental approach, we explored the genoprotective potential of the soxhlet H. indicus extract against different mutagenic compounds and its cytotoxic, proapoptotic, and cytostatic properties. In our experimental conditions, H. indicus induced a cytotoxic effect involving the activation of both intrinsic and extrinsic apoptotic pathways and blocked the cell cycle in the S phase. Moreover, the antigenotoxicity results showed that the extract was able to mitigate DNA damage, an essential mechanism for its applicability as a chemopreventive agent, via either the modulation of extracellular and intracellular events involved in DNA damage. These data add to the growing body of evidence that H. indicus can represent a noteworthy strategy to target early and late stages of cancer.
Collapse
|
11
|
Sponchiado G, Adam ML, Silva CD, Soley BS, de Mello-Sampayo C, Cabrini DA, Correr CJ, Otuki MF. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:289-296. [PMID: 26680588 DOI: 10.1016/j.jep.2015.10.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are known to contain numerous biologically active compounds, and although they have proven pharmacological properties, they can cause harm, including DNA damage. AIM OF THE STUDY Review the literature to evaluate the genotoxicity risk of medicinal plants, explore the genotoxicity assays most used and compare these to the current legal requirements. MATERIAL AND METHODS A quantitative systematic review of the literature, using the keywords "medicinal plants", "genotoxicity" and "mutagenicity", was undertakenQ to identify the types of assays most used to assess genotoxicity, and to evaluate the genotoxicity potential of medicinal plant extracts. RESULTS The database searches retrieved 2289 records, 458 of which met the inclusion criteria. Evaluation of the selected articles showed a total of 24 different assays used for an assessment of medicinal plant extract genotoxicity. More than a quarter of those studies (28.4%) reported positive results for genotoxicity. CONCLUSIONS This review demonstrates that a range of genotoxicity assay methods are used to evaluate the genotoxicity potential of medicinal plant extracts. The most used methods are those recommended by regulatory agencies. However, based on the current findings, in order to conduct a thorough study concerning the possible genotoxic effects of a medicinal plant, we indicate that it is important always to include bacterial and mammalian tests, with at least one in vivo assay. Also, these tests should be capable of detecting outcomes that include mutation induction, clastogenic and aneugenic effects, and structural chromosome abnormalities. In addition, the considerable rate of positive results detected in this analysis further supports the relevance of assessing the genotoxicity potential of medicinal plants.
Collapse
Affiliation(s)
- Graziela Sponchiado
- Departamento de Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Caroline Dadalt Silva
- Departamento de Farmacologia, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Brazil
| | - Bruna Silva Soley
- Departamento de Farmacologia, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Brazil
| | | | - Daniela Almeida Cabrini
- Departamento de Farmacologia, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Brazil
| | | | - Michel Fleith Otuki
- Departamento de Farmacologia, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
12
|
Živković J, Barreira JC, Stojković D, Ćebović T, Santos-Buelga C, Maksimović Z, Ferreira IC. Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Antigenotoxic effect of lipoic acid against mitomycin-C in human lymphocyte cultures. Cytotechnology 2012; 65:553-65. [PMID: 23132681 DOI: 10.1007/s10616-012-9504-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022] Open
Abstract
Antitumor agents are used in therapy against many forms of human cancer. One of these is mitomycin-C (MMC). As with many agents, it can interact with biological molecules and can induce genetic hazards in non-tumor cells. One of the possible approaches to protect DNA from this damage is to supply antioxidants that can remove free radicals produced by antitumor agents. Lipoic acid (LA) is known as one of the most powerful antioxidants. The aim of this study was to investigate antigenotoxic effects of LA against MMC induced chromosomal aberrations (CA), sister chromatid exchanges (SCE) and micronucleus (MN) formation in human lymphocytes. Lymphocytes were treated with 0.2 μg MMC/heparinized mL for 48 h. Three different concentrations (0.5, 1, 2 μg/mL) of LA were used together with MMC in three different applications; 1 h pre-treatment, simultaneous treatment and 1 h post-treatment. A negative, a positive and a solvent control were also included. In all the cultures treated with MMC + LA, the frequency of abnormal cells and CA/cell significantly decreased compared to MMC. Statistically significant reduction was also observed in SCE/cell and MN frequencies in all treatments. These results demonstrated anticlastogenic and antimutagenic effects of LA against MMC induced genotoxicity. LA showed the most efficient effect during 1 h pretreatment. On the other hand, MMC + LA treatments induced significant reduction in mitotic index than that of MMC treatment alone. These results are encouraging that LA can be a possible chemopreventive agent in tumorigenesis in both cancer patients and in health care persons handling anti-cancer drugs.
Collapse
|
14
|
Das S, Bisht SS. The bioactive and therapeutic potential of Hemidesmus indicus R. Br. (Indian Sarsaparilla) root. Phytother Res 2012; 27:791-801. [PMID: 22887725 DOI: 10.1002/ptr.4788] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/18/2012] [Accepted: 07/12/2012] [Indexed: 11/09/2022]
Abstract
The root of Hemidesmus indicus R. Br., commonly known as Indian Sarsaparilla, is used traditionally to treat a wide variety of illnesses including rheumatism, leprosy, impotence, urinary tract and skin infections. The anticancer, antioxidant, anti-inflammatory, antipyretic, analgesic, antimicrobial, antidiabetic, hepatoprotective, cardioprotective, renoprotective, neuroprotective and immunomodulatory properties of H. indicus have been investigated in numerous in vivo and in vitro studies. Among these, the antioxidant and antimicrobial activity was well documented. This review details the phytochemistry and therapeutic applications of H. indicus root.
Collapse
Affiliation(s)
- Sarita Das
- Department of Biotechnology, Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India.
| | | |
Collapse
|
15
|
Kocaman AY, Istifli ES, Büyükleyla M, Rencüzogullari E, Topaktaş M. In vitro evaluation of the protective effects of 4-thujanol against mitomycin-C and cyclophosphamide-induced genotoxic damage in human peripheral lymphocytes. Toxicol Ind Health 2012; 29:23-37. [PMID: 22323477 DOI: 10.1177/0748233712436640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
4-Thujanol (sabinene hydrate), a bicyclic monoterpene alcohol, is found in the essential oils of many aromatic and medicinal plants and is widely used as a fragrance and flavouring agent in many different products. The aim of this study was to evaluate the protective effects of 4-thujanol against the genotoxic effects induced by mitomycin C (MMC) and cyclophosphamide (CP) in human lymphocytes, using the chromosome aberrations, sister chromatid exchanges, and micronucleus tests, in the absence and in the presence of S9 mix, respectively. The cells were treated with 0.25 µg/mL MMC and 28 µg/mL CP as alone and cotreated with 13 + 0.25, 26 + 0.25, and 52 + 0.25 µg/mL 4-thujanol + MMC and with 13 + 28, 26 + 28, and 52 + 28 µg/mL 4-thujanol + CP as a mixture. The present study showed that 4-thujanol was unable to reduce the genetic damage induced by MMC, in the absence of S9 mix. On the other hand, probably the metabolites of 4-thujanol act as an antagonist and markedly antagonize CP-induced genotoxicity, in the presence of S9 mix. In general, 4-thujanol + MMC and 4-thujanol + CP decreased the mitotic index, proliferation index and nuclear division index to the same extent or more than those of individual exposure of MMC or CP. In conclusion, 4-thujanol significantly reduced (p < 0.001) the genotoxic damage induced by CP but not MMC when compared with the respective positive control alone. We can suggest that 4-thujanol may improve the chemopreventive effects and may also reduce the harmful side effects of CP, which is widely used in chemotherapy against cancer, without reducing its antiproliferative activities.
Collapse
|
16
|
Mehta A, Sethiya NK, Mehta C, Shah GB. Anti–arthritis activity of roots of Hemidesmus indicus R.Br. (Anantmul) in rats. ASIAN PAC J TROP MED 2012; 5:130-5. [DOI: 10.1016/s1995-7645(12)60011-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/15/2011] [Accepted: 11/15/2011] [Indexed: 12/01/2022] Open
|
17
|
Kocaman AY, Rencüzoğulları E, Topaktaş M, Istifli ES, Büyükleyla M. The effects of 4-thujanol on chromosome aberrations, sister chromatid exchanges and micronucleus in human peripheral blood lymphocytes. Cytotechnology 2011; 63:493-502. [PMID: 21735266 DOI: 10.1007/s10616-011-9372-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022] Open
Abstract
4-Thujanol, a bicyclic monoterpene alcohol, is present in the essential oils of many medicinal and aromatic plants. It is commonly used as a fragrance and flavouring ingredient in a lot of different products. The potential genotoxic effects of 4-thujanol on human peripheral blood lymphocytes (PBLs) were investigated in vitro by the chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) tests. The cells were treated with 13, 26 and 52 μg/mL 4-thujanol in the presence and absence of a metabolic activator (S9 mix). 4-Thujanol induced CA (P < 0.001) and MN formation (P < 0.05) at all concentrations (13, 26 and 52 μg/mL) in the presence and absence of the S9 mix without a concentration-dependent manner. However, the treatment of peripheral lymphocytes with 4-thujanol did not produce a statistical difference in the frequency of SCEs when compared with control group. Furthermore, this monoterpene did not significantly decrease the mitotic index (MI), proliferation index (PI), and nuclear division index (NDI). In conclusion, 4-thujanol had a significant clastogenic effect at the tested concentrations (13, 26 and 52 μg/mL) for human PBLs. In addition, no cytotoxic and/or cytostatic effects were observed regardless of the concentrations used. This work presents the first report on genotoxic properties of 4-thujanol.
Collapse
Affiliation(s)
- Ayşe Yavuz Kocaman
- Department of Biology, Faculty of Science and Letters, Mustafa Kemal University, 31000, Hatay, Turkey,
| | | | | | | | | |
Collapse
|