1
|
Ojo OA, Nwafor-Ezeh PI, Rotimi DE, Iyobhebhe M, Ogunlakin AD, Ojo AB. Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicol Rep 2023; 10:448-462. [PMID: 37125147 PMCID: PMC10130922 DOI: 10.1016/j.toxrep.2023.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Infertility has been a major issue in our society for many years, and millions of couples all over the world are still experiencing it. There are several reasons for and causes of infertility in both men and women. Recent studies have shown that apoptosis, inflammation, and oxidative stress contribute immensely to infertility. The data regarding this report were obtained through a thorough review of scientific articles published in various databases, including Elsevier, Web of Science, PubMed, Scopus, and Google Scholar. Furthermore, PhD and MSc theses were also reviewed when compiling the data. Apoptosis, also known as "programmed cell death," is a natural and harmless process that occurs in human beings. Although it can become harmful if altered, Inflammation, on the other hand, is the body's reaction to detrimental stimuli caused by toxic substances or compounds, while oxidative stress is a phenomenon that results in an imbalance between the generation and aggregation of reactive oxygen species (ROS) in the cells against antioxidants. These three factors interchangeably bring about several reproductive disorders in the body, resulting in infertility. This review aims at discussing how apoptosis, inflammation, and oxidative stress play a role in human infertility. Availability of data and material The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
- Correspondence to: Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria.
| | - Pearl Ifunanya Nwafor-Ezeh
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | |
Collapse
|
2
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Hamidian G. Effect of NMDA receptor agonist and antagonist on spermatogonial stem cells proliferation in 2- and 3- dimensional culture systems. Mol Biol Rep 2022; 49:2197-2207. [PMID: 35000063 DOI: 10.1007/s11033-021-07041-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and three-dimensional (3D) culture systems. METHODS AND RESULTS The SSCs of male NMRI mice were isolated by enzymatic digestion and cultured for two weeks. Then, the identity of SSCs was validated by anti-Plzf and anti-GFR-α1 antibodies via immunocytochemistry (ICC). The proliferation capacity of SSCs was evaluated by their culture on a layer of the decellularized testicular matrix (DTM) prepared from mouse testis, as well as two-dimensional (2D) with different mediums. After two weeks of the initiation of proliferation culture on 3D and 2D medium, the pre-meiotic at the mRNA and protein levels were evaluated via qRT-PCR and flow cytometry methods, respectively. The results showed that the proliferation rate of SSCs in 3D culture with 50 mM glutamic acid and 20 mM D-serine was significantly different from other groups after 14 days treatment. mRNA expression levels of promyelocytic leukemia zinc finger (Plzf) in 3D cultures supplemented by 20 mM D-serine and 50 mM glutamic acid were considerably higher than the 3D control group (p < 0.001). The flow cytometry analysis revealed that the amount of Plzf in the 2D-culture groups of SSCs with 20 mM MK-801 was considerably lower compared to the 2D-culture control group (p < 0.001). CONCLUSIONS This study indicated that decellularized testicular matrix supplemented with D-serine and glutamic acid could be considered a promising vehicle to support cells and provide an appropriate niche for the proliferation of SSCs.
Collapse
Affiliation(s)
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Allaeian Jahromi Z, Meshkibaf MH, Naghdi M, Vahdati A, Makoolati Z. Methamphetamine Downregulates the Sperm-Specific Calcium Channels Involved in Sperm Motility in Rats. ACS OMEGA 2022; 7:5190-5196. [PMID: 35187334 PMCID: PMC8851642 DOI: 10.1021/acsomega.1c06242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Calcium channels play essential roles in sperm motility. A family of sperm-specific cation channels including CatSper1-4 has been identified as voltage-dependent ion channels that act as sperm motility regulators. Methamphetamine is known to cause apoptosis in seminiferous tubules and affect sperm quality. This research was conducted to investigate the effects of methamphetamine on expression of the CatSper family and Mvh genes. Thirty-six adult Wistar rats were divided into four groups of nine rats each: the control and experimental groups 1, 2, and 3. The control group received no solvents or drugs, but experimental groups 1, 2, and 3 were daily given 0.2 mL of a solution by gavage that contained 0.5, 1, and 2 mg of methamphetamine, respectively, for 45 days. The rats were then anesthetized, and one testis removed from each rat was used in a reverse transcription-polymerase chain reaction (RT-PCR). Analysis of variance (ANOVA) and Tukey's posthoc test were used to analyze the data at the P < 0.05 significance level. Treatment with methamphetamine resulted in decreased testis and epididymis weights compared to the control rats. The results showed that the mRNA fold expression level of the CatSper family and Mvh genes decreased significantly in experimental groups compared to that in the control (P < 0.05). Methamphetamine decreased the expression levels of the CatSper and Mvh genes, and thus, it seemed that it can increase the probability of infertility through sperm motility reduction by lowering the expression levels of these genes.
Collapse
Affiliation(s)
- Zahra Allaeian Jahromi
- Department
of Biology, Science and Research Branch, Islamic Azad University, Fars 11341-73631, Iran
| | - Mohammad Hassan Meshkibaf
- Department
of Clinical Biochemistry, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| | - Majid Naghdi
- Department
of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| | - Akbar Vahdati
- Department
of Biology, Shiraz Branch, Islamic Azad
University, Shiraz 71937-1135, Iran
| | - Zohreh Makoolati
- Department
of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| |
Collapse
|
4
|
Makoolati Z, Bahrami H, Zamanzadeh Z, Mahaldashtian M, Moulazadeh A, Ebrahimi L, Naghdi M. Efficacy of Ficus carica leaf extract on morphological and molecular behavior of mice germ stem cells. Anim Reprod 2022; 19:e20220036. [PMID: 36060818 PMCID: PMC9417092 DOI: 10.1590/1984-3143-ar2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Infertility is one of the most prevalent health disorders in reproductive-age males and females. Ficus carica (Fc), an herbal plant, has been used traditionally for the treatment of different diseases such as infertility especially in Iranian folk medicine. This study examined the effects of Fc leaf extract on the proliferation of mice spermatogonial stem cells (SSCs). Phenolic, flavonoid content, major polyphenolic compounds and antioxidant activity of the extract was evaluated respectively by Folin-Ciocateu, aluminum chloride, HPLC and the FRAP and DPPH methods. Testicular cells of neonate mice were extracted and their identity was confirmed using cytokeratin for Sertoli and Oct-4, CDHI and PLZF for SSCs. Effects of Fc (0.0875, 0.175, 0.35, 0.71 and 1.42 mg/ml) was evaluated at third, 7th, 9th and 14th days of culture by colony assay. The expression of the Mvh, GFRα1 and Oct-4 genes and the viability and proliferation of cultured cells was assessed at the end of the culture period. The extract has a rich phenolic and flavonoid content such as Rutin, Psoralen, Bergapten and Caffeoylmalic acid using HPLC analysis. It also had a potent reducing and radical scavenging activity. Morphology of colonies was similar in all groups. Higher viability, proliferation, colony number and diameter of SSCs was seen in the presence of Fc leaf extract in a dose-dependent manner so that higher number and diameter of colonies were observed in two higher doses of 0.71 and 1.42 mg/ml, separately for each time point relative to other groups. The Mvh, Oct-4 and GFRα1 genes expression had no significant differences between groups. It seems that Fc leaf extract not only had no any cytotoxic effects on the viability and proliferation of SSCs but also support their stemness state. So, this culture system can be employed for enrichment of germ stem cells for use in clinical applications.
Collapse
|
5
|
Astaxanthin Relieves Busulfan-Induced Oxidative Apoptosis in Cultured Human Spermatogonial Stem Cells by Activating the Nrf-2/HO-1 pathway. Reprod Sci 2021; 29:374-394. [PMID: 34129218 DOI: 10.1007/s43032-021-00651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Many child cancer patients endure anticancer therapy containing alkylating agents before sexual maturity. Busulfan (BU), as an alkylating agent, is a chemotherapy drug, causing DNA damage and cytotoxicity in germ cells. In the present study, we aimed to investigate the protective effect of astaxanthin (AST), as a potent antioxidant and powerful reactive oxygen species (ROS) scavenger, on BU-induced toxicity in human spermatogonial stem cells. For this purpose, testes were obtained from four brain-dead donors. After tissue enzymatic digestions, testicular cells were cultured for 3 weeks for spermatogonial stem cell (SSC) isolation and purification. K562 cell line was cultured to survey the effect of AST on cancer treatment. The cultured SSCs and K562 cell line were finally treated with AST (10μM), BU (0.1nM), and AST+BU. The expression of NRF-2, HO-1, SOD2, SOD3, TP53, and apoptotic genes, including CASP9, CASP3, BCL2, and BAX, were assayed using real-time PCR. Moreover, ROS level in different groups and malondialdehyde level and total antioxidant capacity in cell contraction of SSCs were measured using ELISA. Data showed that AST significantly upregulated the expression of NRF-2 gene (P<0.001) and protein (P<0.005) and also significantly decreased the production of BU-induced ROS (P<0.001). AST activated the NRF-2/HO-1 pathway that could remarkably restrain BU-induced apoptosis in SSCs. Interestingly, AST upregulated the expression level of apoptosis genes in the K562 cell line. The results of this study indicated that AST reduces the side effects of BU on SSCs without interference with its chemotherapy effect on cancerous cells through modulation of the NRF-2/HO-1 and mitochondria-mediated apoptosis pathways.
Collapse
|
6
|
Noh S, Go A, Kim DB, Park M, Jeon HW, Kim B. Role of Antioxidant Natural Products in Management of Infertility: A Review of Their Medicinal Potential. Antioxidants (Basel) 2020; 9:E957. [PMID: 33036328 PMCID: PMC7600260 DOI: 10.3390/antiox9100957] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Infertility, a couple's inability to conceive after one year of unprotected regular intercourse, is an important issue in the world. The use of natural products in the treatment of infertility has been considered as a possible alternative to conventional therapies. The present study aimed to investigate the effects and the mechanisms of various natural products on infertility. We collected articles regarding infertility and natural products using the research databases PubMed and Google Scholar. Several natural products possess antioxidant properties and androgenic activities on productive factors and hormones. Antioxidants are the first defense barrier against free radicals produced by oxidative stress (OS). They remove reactive oxygen stress (ROS), reducing insulin resistance, total cholesterol, fat accumulation, and cancer growth. Moreover, various natural products increase endometrial receptivity and fertility ability showing androgenic activities on productive factors and hormones. For example, Angelica keiskei powder and Astragalus mongholicus extract showed anti-infertility efficacies in males and females, respectively. On the other hand, adverse effects and acute toxicity of natural products were also reported. Tripterygium glycoside decreased fertility ability both in males and females. Results indicate that management of infertility with natural products could be beneficial with further clinical trials to evaluate the safety and effect.
Collapse
Affiliation(s)
- Seungjin Noh
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Ara Go
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Da Bin Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Minjeong Park
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
| |
Collapse
|
7
|
Navid S, Abbasi M, Hoshino Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Res Ther 2017; 8:233. [PMID: 29041987 PMCID: PMC5646105 DOI: 10.1186/s13287-017-0687-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Melatonin is a pleiotropic hormone with powerful antioxidant activity both in vivo and in vitro. The present study aimed to investigate the effects of melatonin on the proliferation efficiency of neonatal mouse spermatogonial stem cells (SSCs) using a three-dimensional soft agar culture system (SACS) which has the capacity to induce development of SSCs similar to in vivo conditions. METHODS SSCs were isolated from testes of neonate mice and their purities were assessed by flow cytometry using PLZF antibody. Isolated testicular cells were cultured in the upper layer of the SACS in αMEM medium in the absence or presence of melatonin extract for 4 weeks. RESULTS The identity of colonies was confirmed by alkaline phosphatase staining and immunocytochemistry using PLZF and α6 integrin antibodies. The number and diameter of colonies of SSCs in the upper layer were evaluated at days 14 and 28 of culture. The number and diameter of colonies of SSCs were significantly higher in the melatonin group compared with the control group. The levels of expression of ID-4 and Plzf, unlike c-kit, were significantly higher in the melatonin group than in the control group. CONCLUSIONS Results of the present study show that supplementation of the culture medium (SACS) with 100 μM melatonin significantly decreased reactive oxygen species (ROS) production in the treated group compared with the control group, and increased SSC proliferation.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Kagamiyama 1-4-4, Hiroshima 739-8528 Japan
| |
Collapse
|
8
|
Jeon HL, Yi JS, Kim TS, Oh Y, Lee HJ, Lee M, Bang JS, Ko K, Ahn IY, Ko K, Kim J, Park HK, Lee JK, Sohn SJ. Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells. Toxicol Res 2017; 33:107-118. [PMID: 28443181 PMCID: PMC5402864 DOI: 10.5487/tr.2017.33.2.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/15/2023] Open
Abstract
Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration (IC50) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.
Collapse
Affiliation(s)
- Hye Lyun Jeon
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Jung-Sun Yi
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Tae Sung Kim
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Youkyung Oh
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Hye Jeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea
| | - Minseong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea
| | - Jin Seok Bang
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea
| | - Il Young Ahn
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Kyungyuk Ko
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Joohwan Kim
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Hye-Kyung Park
- Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Jong Kwon Lee
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Soo Jung Sohn
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| |
Collapse
|