1
|
Liu Y, Zhang X, Cheng F, Cao W, Geng Y, Chen Z, Wei W, Zhang L. Xanthatin induce DDP-resistance lung cancer cells apoptosis through regulation of GLUT1 mediated ROS accumulation. Drug Dev Res 2023; 84:1266-1278. [PMID: 37260173 DOI: 10.1002/ddr.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Chemoresistance to cisplatin (DDP) therapy is a major obstacle that needs to be overcome in treating lung cancer patients. Xanthatin has been reported to exhibit an antitumor effect on various cancers, but the function of xanthatin in DDP-resistance lung cancer remains unclear. The study aimed to explore the effect and mechanisms of xanthatin on proliferation, apoptosis, and migration in DDP-resistance lung cancer cells. In the present study, xanthatin suppresses the expression of glucose transporter 1 (GLUT1), attenuates the pentose phosphate pathway (PPP), and causes ROS accumulation and apoptosis, thereby mitigating the antioxidative capacity in DDP-resistance cells. Previous studies have shown that GLUT1 is associated with resistance to platinum drugs. We found that GLUT1 was significantly increased in the DDP-resistant lung cancer cell line compared to the parental cell line, and xanthatin significantly downregulated GLUT1 expression in DDP-resistant lung cancer cells. Notably, overexpression of GLUT1 significantly reduced the production of ROS and increased cellular NADPH/NADP+ and GSH/GSSG ratios. Thus, these results suggest that xanthatin induces DDP-resistance lung cancer cells apoptosis through regulation of GLUT1-mediated ROS accumulation. These findings might provide a possible strategy for the clinical treatment of DDP-resistant lung cancer.
Collapse
Affiliation(s)
- Yunxiao Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinge Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Fenting Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Gligor O, Clichici S, Moldovan R, Decea N, Vlase AM, Fizeșan I, Pop A, Virag P, Filip GA, Vlase L, Crișan G. An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091840. [PMID: 37176897 PMCID: PMC10180766 DOI: 10.3390/plants12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.
Collapse
Affiliation(s)
- Octavia Gligor
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, Oncology Institute "Prof. Dr. Ion Chiricuță", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Xanthatin and 8-epi-xanthatin as new potential colchicine binding site inhibitors: a computational study. J Mol Model 2023; 29:36. [PMID: 36627468 DOI: 10.1007/s00894-022-05428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
CONTEXT Phytocompounds xanthatin and 8-epi-xanthatin, obtained from Xanthium chinese Mill, showed antitumoral activity in vitro related to the microtubules destabilizing properties of these phytocompounds. Five binding sites for microtubule destabilizing agents have been characterized on tubulin by high-resolution X-ray crystallography: vinca domain, colchicine, pironetin, maytansine site, and more recently, the seventh site. This work aims to develop a comprehensive computational strategy to understand and eventually predict the interaction between xanthatin and 8-epi-xanthatin with the destabilizing-antimitotic binding domain of the tubulin heterodimer. In addition, we propose a putative binding site for these phytocompounds into the microtubule destabilizing binding sites on the tubulin heterodimer. Xanthanolides showed higher stability in the colchicine and pironetin binding sites, whit a greater affinity for the former. In addition, we found that xanthanolides and non-classical colchicine binding site inhibitors share a high structural similarity. METHODS The 3D structures for xanthatin and 8-epi-xanthatin were obtained using DFT with the hybrid functional B3LYP and the base 6-31G (d,p), implemented in Gaussian 09. The 3D coordinates for tubulin proteins were downloaded from PDB. The complexes tubulin-xanthanolides were predicted using a Monte-Carlo iterated search combined with the BFGS gradient-based optimizer implemented in the AutoDock Vina. The xanthanolides-tubulin complexes were energy minimized by molecular dynamics simulations at vacuum, and their stabilities were evaluated by solvated molecular dynamics simulations during 100 ns. All molecular dynamics simulations were performed using the conjugate gradient method implemented in NAMD2 and CHARMM36 forcefield.
Collapse
|
4
|
Xie Y, Zhu X, Liu P, Liu Y, Geng Y, Zhang L. Xanthatin inhibits non‐small cell lung cancer proliferation by breaking the redox balance. Drug Dev Res 2022; 83:1176-1189. [PMID: 35466412 DOI: 10.1002/ddr.21941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yanbo Xie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Xueyu Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Ping Liu
- Institute of Clinical Pharmacology Anhui Medical University Hefei Anhui China
| | - Yunxiao Liu
- Institute of Clinical Pharmacology Anhui Medical University Hefei Anhui China
| | - Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
- Department of Pharmacy, Anhui Provincial Hospital Anhui Medical University Hefei Anhui China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
- Department of Pharmacy, Anhui Provincial Hospital Anhui Medical University Hefei Anhui China
- Institute of Clinical Pharmacology Anhui Medical University Hefei Anhui China
| |
Collapse
|
5
|
Zheng X, Sun C, Yu R, Chu X, Xu J, Liu C, Zhao M, Xu X, Xia M, Wang C. CD13-specific ligand facilitates Xanthatin nanomedicine targeting dendritic cells for therapy of refractory allergic rhinitis. Int J Pharm 2020; 577:119034. [DOI: 10.1016/j.ijpharm.2020.119034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 01/15/2023]
|
6
|
Francisco Fernandez M, Charfi C, Piloto-Ferrer J, Lidia González M, Lamy S, Annabi B. Targeting Ovarian Cancer Cell Cytotoxic Drug Resistance Phenotype with Xanthium strumarium L. Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6073019. [PMID: 31827554 PMCID: PMC6885198 DOI: 10.1155/2019/6073019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
Emerging drugs aim at targeting the genomic integrity and replication machinery in ovarian cancer. While the antiproliferative activity of Xanthium strumarium L. extract (XFC), a traditional herbal medicine, is believed to alter the mitotic apparatus of Chinese hamster ovary epithelial cells, its capacity to target and overcome the chemoresistance phenotype in ovarian cancer is unknown. Among the cancer cell lines tested, we found that the best proliferation inhibitory effect for XFC was against ovarian cancer cells and ranged from 30 to 35 μg/mL. XFC efficiently targeted both the cytotoxic drug chemoresistance phenotype of SKOV-3 cells and of the chemosensitive ES-2 cells. Early apoptosis and late apoptosis were effectively induced by XFC extract in ES-2 cells, whereas late apoptosis and necrosis events were triggered in SKOV-3 cells. Cell cycling regulation was trapped by XFC extract in the G2/M phase in both the ES-2 and SKOV-3 cell models. This effect was, in part, attributable to increased dose-dependent tubulin polymerization, which was increased in SKOV-3 cells. Whereas XFC extract triggered poly (ADP-Ribose) polymerase (PARP) cleavage in both ES-2 and SKOV-3 cells, it only lowered Nrf2 in ES-2 cells and phosphorylated Akt levels in SKOV-3 cells. Interestingly, cell cycling regulators Cdk4, Cyclin D3, and p27 were all decreased in SKOV-3 cells. XFC extracts were effective in inhibiting in vitro migration in both ovarian cancer cell models. Our data support the potential anticancer targeting of chemoresistant human ovarian cancer cells phenotype by XFC extract.
Collapse
Affiliation(s)
- Marbelis Francisco Fernandez
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de Recherche BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Cyndia Charfi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de Recherche BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Janet Piloto-Ferrer
- Departamento de Genética Toxicológica, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/Puentes Grandes y Boyeros, La Habana, Cuba
| | - Maria Lidia González
- Departamento de Genética Toxicológica, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/Puentes Grandes y Boyeros, La Habana, Cuba
| | - Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de Recherche BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de Recherche BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Piloto-Ferrer J, Sánchez-Lamar Á, Francisco M, González ML, Merino N, Aparicio G, Pérez C, Rodeiro I, Lopes MTP. Xanthium strumarium´s xanthatins induces mitotic arrest and apoptosis in CT26WT colon carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:236-244. [PMID: 30797985 DOI: 10.1016/j.phymed.2018.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most common malignancies worldwide and is associated with high mortality rates. We previously reported that Xanthium strumarium L. induces mitotic arrest in proliferating cells, a process mediated by xanthatins. HYPOTHESIS/AIM The aim of this work is to study if xanthatins, isolated from X. strumarium total extract, affect the proliferative capacity of CT26WT colon cancer cells and, in consequence, if tumor growth and proliferation of (lung) metastatic sites can also be arrested in vivo. STUDY DESIGN This study consisted of both in vitro and in vivo experiments involving the CT26WT cell line and a subcutaneous mouse model of colon cancer. In vitro cell cycle progression, in vivo tumoral growth and anti-metastatic activity were analyzed to investigate whether xanthatins of X. strumarium induce mitotic arrest in proliferating colorectal carcinoma. RESULTS Our in vitro results show that X. strumarium, mediated by xanthatins, induces G2/M arrest and impair anaphase entrance. This leads to a significant induction of apoptotic and necrotic in CT26WT cells, demonstrating their significant anti-proliferative activity through interfering with the mitotic apparatus. Furthermore, our in vivoresults reveal that X. strumarium inhibits both tumor growth and metastasis progression. CONCLUSION X. strumarium antitumor activities are mainly mediated by xanthatins through inhibition of tumor growth and metastasis, inducing mitotic arrest and apoptosis in colon carcinoma cells. These findings further confirm the therapeutic potential of X. strumarium in colorectal cancer.
Collapse
Affiliation(s)
- Janet Piloto-Ferrer
- Departamento de Toxicología Genética y antitumorales, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/ Puentes Grandes y Boyeros, La Habana, Cuba.
| | - Ángel Sánchez-Lamar
- Departamento de Biología Vegetal, Laboratorio de Toxicología Genética, Facultad de Biología, Universidad de la Habana, Calle 25, No. 455, e/ I y J, Vedado, La Habana, Cuba
| | - Marbelis Francisco
- Departamento de Toxicología Genética y antitumorales, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/ Puentes Grandes y Boyeros, La Habana, Cuba
| | - Maria L González
- Departamento de Toxicología Genética y antitumorales, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/ Puentes Grandes y Boyeros, La Habana, Cuba
| | - Nelsón Merino
- Departamento de Toxicología y Farmacología, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/ Puentes Grandes y Boyeros, La Habana, Cuba
| | - Guillermo Aparicio
- Departamento de Toxicología y Farmacología, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Avenida 26, No. 1605 e/ Puentes Grandes y Boyeros, La Habana, Cuba
| | - Carlos Pérez
- Departamento de Bioquímica, Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón" (ICBP), Universidad de Ciencias Médicas de La Habana (UCMH). Calle 146 # 3102, Playa, La Habana, Cuba
| | - Idania Rodeiro
- Departamento de Farmacología, Instituto de Ciencias del Mar (ICIMAR), Loma 14, Alturas del Vedado, Plaza de la Revolución, La Habana, Cuba
| | - Miriam Teresa Paz Lopes
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB) Universidad Federal de Minas Gerais (UFMG), Avda. Antonio Carlos 6627, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
8
|
Bi SX, Li XH, Wei CS, Xiang HH, Shen YX, Yu YQ. The antitumour growth and antiangiogenesis effects of xanthatin in murine glioma dynamically evaluated by dynamic contrast-enhanced magnetic resonance imaging. Phytother Res 2018; 33:149-158. [PMID: 30346082 DOI: 10.1002/ptr.6207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022]
Abstract
To investigate the suppressive effects of xanthatin on glioma growth in a nude mouse xenograft model and rat orthotopic implantation model using magnetic resonance imaging (MRI) to dynamically monitor the antitumour growth and antiangiogenesis effects of xanthatin. The nude mouse xenograft tumour model and rat orthotopic implantation model were established to observe the antitumour effects of xanthatin in vivo. In the rat orthotopic implanted tumour model, MRI scanning was used to dynamically monitor the antitumour growth effect and evaluate the antiangiogenesis effect of xanthatin. We found that xanthatin at a dose of 0.4 mg/10 g dramatically decreased the growth of xenograft tumours in nude mice. The antiangiogenesis effect of xanthatin C6 glioma was evaluated by dynamic contrast-enhanced (DCE) MRI via comparison of the volume transfer constant (Ktrans ) value, a parameter that reflects vessel permeability. We found that xanthatin at the doses of 8 and 16 mg/kg significantly decreased the Ktrans value, which suggests that xanthatin has antiangiogenesis effects. These data demonstrate the suppressive effects of xanthatin on C6 glioma occur via antiangiogenesis. Meanwhile, this study also provides evidence for the application of quantitative parameters of DCE-MRI for dynamically evaluating the growth and angiogenesis of intracranial tumours and for experimental and clinical research.
Collapse
Affiliation(s)
- Si-Xing Bi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xiao-Hu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chuan-Sheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Hui-Hui Xiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yong-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Ingawale AS, Sadiq MB, Nguyen LT, Ngan TB. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|