1
|
Gómez-Patiño MB, Estrada-Reyes R, Hernández-Mendoza HH, Suarez-Rojas Á, Arrieta-Baez D. Antidepressant- and Anxiolytic-like Effects in Mice of Alkaloids from Aerial Parts of Argemone platyceras Link & Otto. Pharmaceuticals (Basel) 2025; 18:49. [PMID: 39861112 PMCID: PMC11768258 DOI: 10.3390/ph18010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives:Argemone platyceras Link & Otto, an endemic plant of Mexico, is widely distributed in the central area of the country, mainly in the states of Tlaxcala, Puebla, and the State of Mexico. Ethnobotanical studies in different communities of these states have demonstrated that it is primarily used to treat diabetes and mental illnesses, such as "los nervios" (nerves) and "el ansia" (anxiety); these terms are used in traditional medicine, but it is accepted that they refer to anxiety disorders. This study aimed to validate the traditional use of aerial parts of A. platyceras Link & Otto in treating these illnesses. Methods: a standardized acidic method to obtain alkaloids was used to obtain an extract (AlkExt), which was tested in adult male Swiss Webster mice in the tail suspension (TST) and forced swimming (FST) tests. Results: AlkExt was analyzed using mass spectrometry techniques (DI-ESI and UHPLC-MS) to detect 2,3',4,5'-Tetramethoxystilbene (m/z 301.14, 3%), scoulerine (m/z 328.16, 19.8%), tetrahydro-columbamine (m/z 342.17, 28.8%), 8-(hydroxymethyl)-2,10-dimethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline-1,11-diol (m/z 358.17, 22.8%), and glaucine (m/z 356.19, 11.1%); these were assayed in a single oral administration of AlkExt, which caused robust anxiolytic- and antidepressant-like effects without affecting the spontaneous ambulatory activity of the mice. Conclusions: The easy and standardized AlkExt analyzed in pharmaceuticals assays in this study strongly suggest its therapeutic potential to treat the comorbidity of anxiety and depression disorders and support further investigations in people with these diseases.
Collapse
Affiliation(s)
- Mayra Beatriz Gómez-Patiño
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Zacatenco, Mexico City 07738, Mexico;
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Mexico City 14370, Mexico;
| | - Héctor Hugo Hernández-Mendoza
- Laboratorio de Productos Naturales y Síntesis Orgánica, Facultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Calzada de Apizaquito S/N, San Luis Apizaquito, Tlaxcala, Apizaco 90401, Mexico; (H.H.H.-M.); (Á.S.-R.)
| | - Ángela Suarez-Rojas
- Laboratorio de Productos Naturales y Síntesis Orgánica, Facultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Calzada de Apizaquito S/N, San Luis Apizaquito, Tlaxcala, Apizaco 90401, Mexico; (H.H.H.-M.); (Á.S.-R.)
| | - Daniel Arrieta-Baez
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Zacatenco, Mexico City 07738, Mexico;
| |
Collapse
|
2
|
Kashkooe A, Jalali A, Zarshenas MM, Hamedi A. Exploring the Phytochemistry, Signaling Pathways, and Mechanisms of Action of Tanacetum parthenium (L.) Sch.Bip.: A Comprehensive Literature Review. Biomedicines 2024; 12:2297. [PMID: 39457613 PMCID: PMC11505096 DOI: 10.3390/biomedicines12102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The traditional use of Tanacetum parthenium (L.) Sch.Bip., commonly known as feverfew, extends across various medical conditions, notably those associated with pain and inflammation. In alignment with the growing trend towards developing medications that target specific signaling pathways for enhanced efficacy and reduced side effects, extensive research has been conducted to investigate and validate the pharmacological effects of feverfew. Among its bioactive compounds, parthenolide stands out as the most potent, categorized as a germacranolide-type sesquiterpene lactone, and has been extensively studied in multiple investigations. Significantly, the anti-inflammatory properties of feverfew have been primarily attributed to its capacity to inhibit nuclear factor-kappa B (NF-κB), resulting in a reduction in pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α). Furthermore, the anticancer properties of feverfew have been associated with the modulation of Mitogen-Activated Protein Kinase (MAPK) and NF-κB signaling pathways. This study further delves into the neuroprotective potential of feverfew, specifically in the management of conditions such as migraine headaches, epilepsy, and neuropathic pain through various mechanisms. The core objective of this study is to elucidate the phytochemical composition of feverfew, with a particular emphasis on understanding the molecular mechanisms and examining the signaling pathways that contribute to its pharmacological and therapeutic effects. Additionally, the safety, toxicity, and potential adverse effects of feverfew are comprehensively evaluated, with an overarching goal of providing valuable insights into the plant's potential for targeted and effective treatments.
Collapse
Affiliation(s)
- Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Mohammad M. Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| |
Collapse
|
3
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
4
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
5
|
Martínez-Radl FB, Hinton DE, Stangier U. Susto as a cultural conceptualization of distress: Existing research and aspects to consider for future investigations. Transcult Psychiatry 2023; 60:690-702. [PMID: 36991563 PMCID: PMC10504816 DOI: 10.1177/13634615231163986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Among the cultural conceptualizations of distress, susto is defined in the DSM-5 as "a cultural explanation of distress and misfortune in Latin America that refers to an illness attributed to a terrifying event that causes the soul to leave the body and leads to unhappiness and illness, as well as difficulties in performing key social functions" (American Psychiatric Association (APA) (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th edition. Washington, DC: APA, p. 836). Thus, susto represents a cultural explanation that encompasses the symptoms of various mental disorders and physical diseases. We analyzed the descriptions of susto from different scientific fields and related them to definitions of DSM-5 syndromes. Three syndromic subtypes of susto show a symptomatic overlap with depression, post-traumatic stress disorder (PTSD) and somatic disorder. However, linguistic metaphors describing symptoms and perceived causes that are specific for Latin American culture support the concept of susto as a specific idiom of distress (e.g., loss of soul, shadow or ajayu; sunken, closed or white eyes; jumping and screaming in the night; being thrown to the ground). In addition, if diagnostic criteria are met for mental disorders, then susto describes a perceived cause of psychopathological states (e.g., depressive disorder, PTSD, somatic disorder, panic disorder, generalized anxiety disorder). Future research with people who have experienced susto is needed to clarify whether susto precedes the onset of other mental disorders (perceived cause) or whether it is a way of designating distress (idiom of distress).
Collapse
|
6
|
Behl T, Rana T, Sehgal A, Sharma N, Albarrati A, Albratty M, Makeen HA, Najmi A, Verma R, Bungau SG. Exploring the multifocal role of phytoconstituents as antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110693. [PMID: 36509251 DOI: 10.1016/j.pnpbp.2022.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Depression is the most prevalent and devastating neuropsychiatric disorder. There are several conventional antidepressants used for the treatment of depression. But due to their undesired adverse effects, patient compliance is very poor. Thus, developing novel medications for the treatment of depression is a critical strategic priority for meeting therapeutic demands. Current research is looking for alternatives to traditional antidepressants to reduce undesired side effects and increase efficacy. Phytoconstituents provide a wide research range in antidepressant treatments. In the present article, we have conducted a comprehensive assessment of neurological evidence, which supports the usefulness of phytoconstituents in the treatment of the depressive disorder. Secondary plant metabolites including alkaloids, polyphenols, glycosides, saponins, and terpenoids were found to exhibit antidepressant action. Most of the phytoconstituents were found to mediate their antidepressant effect through the upregulation of brain-derived neurotrophic factor (BDNF), serotonin, noradrenaline, and dopamine. Some were also found to exert antidepressant effects by inhibiting the monoamine oxidase (MAO) activity and hypothalamic-pituitary-adrenal (HPA) axis overactivity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raman Verma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
7
|
Chemical Constituents and Antidepressant-Like Activity of the Ethanol Extract of Lindera fragrans Leaves. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Matraszek-Gawron R, Chwil M, Terlecki K, Skoczylas MM. Current Knowledge of the Antidepressant Activity of Chemical Compounds from Crocus sativus L. Pharmaceuticals (Basel) 2022; 16:58. [PMID: 36678554 PMCID: PMC9860663 DOI: 10.3390/ph16010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Psychotropic effect of Crocus sativus L. (family Iridaceae) biologically active chemical compounds are quite well documented and they can therefore be used in addition to the conventional pharmacological treatment of depression. This systematic review on antidepressant compounds in saffron crocus and their mechanisms of action and side effects is based on publications released between 1995−2022 and data indexed in 15 databases under the following search terms: antidepressant effect, central nervous system, Crocus sativus, cognitive impairement, crocin, crocetin, depression, dopamine, dopaminergic and serotonergic systems, picrocrocin, phytotherapy, neurotransmitters, safranal, saffron, serotonin, and biologically active compounds. The comparative analysis of the publications was based on 414 original research papers. The investigated literature indicates the effectiveness and safety of aqueous and alcoholic extracts and biologically active chemical compounds (alkaloids, anthocyanins, carotenoids, flavonoid, phenolic, saponins, and terpenoids) isolated from various organs (corms, leaves, flower petal, and stigmas) in adjuvant treatment of depression and anxiety. Monoamine reuptake inhibition, N-methyl-d-aspartate (NMDA) receptor antagonism, and gamma-aminobutyric acid (GABA)-α agonism are the main proposed mechanism of the antidepressant action. The antidepressant and neuroprotective effect of extract components is associated with their anti-inflammatory and antioxidant activity. The mechanism of their action, interactions with conventional drugs and other herbal preparations and the safety of use are not fully understood; therefore, further detailed research in this field is necessary. The presented results regarding the application of C. sativus in phytotherapy are promising in terms of the use of herbal preparations to support the treatment of depression. This is particularly important given the steady increase in the incidence of this disease worldwide and social effects.
Collapse
Affiliation(s)
- Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Racławickie 1 Street, 20-059 Lublin, Poland
| | - Michał Marian Skoczylas
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 Street, 71-252 Szczecin, Poland
| |
Collapse
|
9
|
Recovery of Naringin-Rich Flavonoid Extracts from Agroresidues with Anxiolytic- and Antidepressant-like Effects in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238507. [PMID: 36500599 PMCID: PMC9740236 DOI: 10.3390/molecules27238507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Citrus paradisi species belong to the Rutaceae family, and it is commonly known as grapefruit. Grapefruit consumption involves a large amount of waste that goes to landfills and produces significant pollution affecting the human health. To examine this phenomenon, we designed an efficient chemical method that recovers naringin-rich flavonoid extracts from the fresh waste of grapefruits, by using the solvent impregnation resin method (SIR) with XAD-4 amberlite and either methanol or water as elution systems. Additionally, we focused on evaluating these extracts' anxiolytic- and antidepressant-like effects in behavioral predictive paradigms in mice. According to direct Principal Component Analysis (PCA) by NMR, and Direct Injection Electrospray Ionization-Mass Spectrometry (DIESI-MS), methanol extracts obtained after resin treatment were free of coumarin compounds and evinced had a high content of naringin. Poncirin, phenylalanine, chrysin 5,7-dimethyl ether, 5,7-dimethoxy-4'-hydroxyflavanone, 2,3-dihydro-2-(4-hydroxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one, tetrahydrocurcumin, corchoionoside C, 6'-coumaroyl-1'-O-[2-(3,4-dihydroxyphenyl) ethyl]-β-D-glucopyranoside were also detected. Naringin-rich methanol extract caused a clear anxiolytic-like effect in the Elevated Plus Maze (EPM) and the Hole-Board (HBT) Tests, increasing oral doses of this extract did not produce a sedative effect. A single oral dose caused an antidepressant-like effect in the Tail Suspension Test (TST), while repeated administrations of the methanol extract elicited a robust antidepressant effect in the Forced Swimming Test (FST) in mice. Our evidence highlights the importance of bioprospecting studies of organic waste with therapeutic potentials, such as anxiety and depression disorders.
Collapse
|
10
|
Alenzi KA, Alharbi FH, Tawhari FM, Fradees GS. Alteration of Coagulation Test Results and Vaginal Bleeding Associated With the Use of Feverfew ( Tanacetum parthenium). J Med Cases 2021; 12:9-12. [PMID: 34434419 PMCID: PMC8383641 DOI: 10.14740/jmc3601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/17/2020] [Indexed: 11/20/2022] Open
Abstract
Tanacetum parthenium (feverfew) is a member of the daisy family; it is used to prevent and treat migraine and rheumatoid arthritis. It has a long history of use as a traditional and folk medicine in Chinese, Greek, Indian and Arabic medicine, having been used for hundreds of years. The term feverfew comes from the Latin word febrifugia and means fever reducer. However, Short term use of feverfew (up to 4 months) is considered safe in adults. According to a few clinical trials, Tanacetum parthenium was not associated with serious adverse events but rather with mild and reversible events. Adverse events leading to withdrawals were mainly of a gastrointestinal nature. There is no major safety issue. Nevertheless, we report one case of a 36-year-old woman with known migraine who visited the obstetrics and gynecology clinic upon developing vaginal bleeding, prolonged duration of the menstrual cycle, and reddish skin without bruising. The patient suffered from these symptoms over a period of 3 months prior to the clinic visit. Based on history, the patient began taking 800 mg capsules of feverfew three times per day 9 months ago. We applied the Naranjo scale in our case, and it indicated that a probable relationship exists between feverfew and vaginal bleeding. Feverfew should be used cautiously by patients planning elective surgery, having coagulant disorders or taking antithrombotic drugs.
Collapse
Affiliation(s)
- Khalidah A Alenzi
- Ministry of Health, Regional Drug Information and Pharmacovigilance Center, Tabuk, Saudi Arabia
| | - Fasil H Alharbi
- Ministry of Health, Regional Drug Information and Pharmacovigilance Center, Tabuk, Saudi Arabia
| | - Fasil M Tawhari
- Ministry of Health, Regional Drug Information and Pharmacovigilance Center, Tabuk, Saudi Arabia
| | - Ghada S Fradees
- Ministry of Health, Prince Sultan Cardiac Center, Al-Qassim, Saudi Arabia
| |
Collapse
|
11
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
12
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
13
|
Martinez-Mota L, Cruz-Tavera A, Dorantes-Barrón AM, Arrieta-Báez D, Ramírez-Salado I, Cruz-Aguilar MA, Mayagoitia-Novales L, Cassani J, Estrada-Reyes R. Calea zacatechichi Schltdl. (Compositae) produces anxiolytic- and antidepressant-like effects, and increases the hippocampal activity during REM sleep in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113316. [PMID: 32866569 DOI: 10.1016/j.jep.2020.113316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calea zacatechichi is a plant with an extensive popular and ritual use in Mexico. In healthy volunteers, it induces well-being and tranquility senses, and facilitates superficial stages of sleep. However, anxiolytic, and antidepressant-like effects and changes on the sleep-waking stages have not been explored. AIM To determine anxiolytic and antidepressant-like effects of an aqueous extract of C. zacatechichi (CZ) in rodents and to analyze their effects on hippocampal activity in the rat sleep-waking cycle. MATERIAL AND METHODS CZ anxiolytic- and antidepressant-like effects were evaluated in several mice and rat behavioral paradigms. CZ effects on temporal distribution of sleep were described, and hippocampus EEG frequency patterns were analyzed during the sleep-waking cycle; absolute and relative powers were analyzed during Rapid Eye Movements (REM) and non-REM sleep stages. CZ chemical analysis was performed by UPLC-ESI-MS. RESULTS CZ produced specific and robust anxiolytic- and antidepressant-like effects in mice and rats, similar to those of prototypical drugs, at doses ranging from 0.5 to 50 mg/kg. CZ at 100 mg/kg produced visible mild sedative effects in rats, associated with a significant increase in Slow Wave Sleep episodes during a 6 h recording, and enhanced fast frequencies of hippocampus (gamma-band:31-50 Hz) during REM sleep. CONCLUSION Results could support the well-being and tranquility senses reported by healthy consumers, and to explain the oneiric content during dreams and some improvements in cognitive processes described by consumers. Anxiolytic- and antidepressant-like effects of this species, reported for first time in this study could improve some aspects of mental health.
Collapse
Affiliation(s)
- Lucía Martinez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Adrián Cruz-Tavera
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Daniel Arrieta-Báez
- Instituto Politécnico Nacional, CNMN, Luis Enrique Erro S/n, Unidad Prof. Adolfo López Mateos, Gustavo A. Madero, 07738, Ciudad de México, Mexico
| | - Ignacio Ramírez-Salado
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Manuel Alejandro Cruz-Aguilar
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Lilian Mayagoitia-Novales
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Julia Cassani
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, 04960, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Hosseini A, Allahyari F, Azizi V. Effects of Tanacetum polycephalum on passive avoidance learning and oxidative stress in epileptic model of memory impairment in the male Wistar rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Ana María DB, Rosa María VV, Lilian MN, Lucía MM, Oscar GP, Rosa ER. Neurobehavioral and toxicological effects of an aqueous extract of Turnera diffusa Willd (Turneraceae) in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:50-62. [PMID: 30818006 DOI: 10.1016/j.jep.2019.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/05/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
AIMS To explore the antidepressant- and anxiolytic-like effects of an aqueous extract of Turnera diffusa Willd (Turneraceae) and to explore its possible toxic side effects on behavior, target organ function, and spermatic quality. MATERIALS AND METHODS Acute effects of a T. diffusa aqueous extract were evaluated in adult male mice with the plus-maze, forced swimming and open field tests to identify the possible anxiolytic, antidepressant and stimulant effects of this extract. Effects of T. diffusa aqueous extract were further investigated through two approaches. a) Male and female adult mice receiving a 28-day treatment were evaluated in a neurobehavioral test battery; later, changes in their biochemical parameters and in target organ morphology were analyzed. b) In young adult (16-weeks old) and mature (46-weeks old) males, spermatic quality and testes morphology during a complete spermatogenesis cycle were analyzed after a 35-day treatment. RESULTS T. diffusa aqueous extract induced remarkable anxiolytic- and antidepressant-like effects without affecting locomotor activity. This extract did not elicit behavioral signs of neural side effects, a sex-dependent reduction in body weight gain was produced without affecting functional parameters or the morphology of target organs. The highest dose improved cellular turnover in the testes of mature mice. CONCLUSION T. diffusa aqueous extract induced a clear anxiolytic-like effect, and for the first time, we reported an antidepressant effect. Clinical potential or even intake of T. diffusa in the context of traditional medicine can be supported by its efficacy to positively modulate behavior and its safety for a wide range of doses.
Collapse
Affiliation(s)
- Dorantes-Barrón Ana María
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 CDMX, Mexico
| | - Vigueras Villaseñor Rosa María
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán, 04530 CDMX, Mexico
| | - Mayagoitia-Novales Lilian
- Departamento de Etología, Dirección de Investigaciones en Neurociencias. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 CDMX, Mexico
| | - Martínez-Mota Lucía
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 CDMX, Mexico
| | - Gutiérrez-Pérez Oscar
- Centro de Enseñanza, Investigación y Extensión en Producción Porcina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Jilotepec, Estado de México 54240, Mexico
| | - Estrada-Reyes Rosa
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 CDMX, Mexico.
| |
Collapse
|
16
|
Fedotova J, Kubatka P, Büsselberg D, Shleikin AG, Caprnda M, Dragasek J, Rodrigo L, Pohanka M, Gasparova I, Nosal V, Opatrilova R, Qaradakhi T, Zulli A, Kruzliak P. Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts. Biomed Pharmacother 2017; 95:437-446. [PMID: 28863384 DOI: 10.1016/j.biopha.2017.08.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 01/20/2023] Open
Abstract
Anxiety and anxiety-like disorders describe many mental disorders, yet fear is a common overwhelming symptom often leading to depression. Currently two basic strategies are discussed to treat anxiety: pharmacotherapy or psychotherapy. In the pharmacotherapeutical clinical approach, several conventional synthetic anxiolytic drugs are being used with several adverse effects. Therefore, studies to find suitable safe medicines from natural sources are being sought by researchers. The results of a plethora experimental studies demonstrated that dietary phytochemicals like alkaloids, terpenes, flavonoids, phenolic acids, lignans, cinnamates, and saponins or various plant extracts with the mixture of different phytochemicals possess anxiolytic effects in a wide range of animal models of anxiety. The involved mechanisms of anxiolytics action include interaction with γ-aminobutyric acid A receptors at benzodiazepine (BZD) and non-BZD sites with various affinity to different subunits, serotonergic 5-hydrodytryptamine receptors, noradrenergic and dopaminergic systems, glutamate receptors, and cannabinoid receptors. This review focuses on the use of both plant-derived natural compounds and plant extracts with anxiolytic effects, describing their biological effects and clinical application.
Collapse
Affiliation(s)
- Julia Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of Comparative Somnology and Neuroendocrinology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Chemistry and Molecular Biology, ITMO University, St. Petersburg, Russia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Alexander G Shleikin
- Department of Chemistry and Molecular Biology, ITMO University, St. Petersburg, Russia
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Dragasek
- Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturia (HUCA), Oviedo, Spain
| | - Miroslav Pohanka
- Facultpy of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital in Martin, Martin, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Tawar Qaradakhi
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Anthony Zulli
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|