1
|
Xu F, Valappil AK, Zheng S, Zheng B, Yang D, Wang Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024; 14:705. [PMID: 38927108 PMCID: PMC11201925 DOI: 10.3390/biom14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.
Collapse
Affiliation(s)
- Fengjiao Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Deokchun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
2
|
Jung HY, Kwon HJ, Kim W, Yoo DY, Kang MS, Choi JH, Moon SM, Kim DW, Hwang IK. Extracts from Dendropanax morbifera leaves ameliorates cerebral ischemia-induced hippocampal damage by reducing oxidative damage in gerbil. J Stroke Cerebrovasc Dis 2024; 33:107483. [PMID: 37976794 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
AIM In this study, we investigated the effects of Dendropanax morbifera extract (DME) on neuroprotection against ischemic damage in gerbils. METHODS DME (100 or 300 mg/kg) was orally administered to gerbils for three weeks, and 2 h after the last DME treatment, transient forebrain ischemia in the common carotid arteries was induced for 5 min. The forebrain ischemia-related cognitive impairments were assessed by spontaneous motor activity and passive avoidance test one and four days after ischemia, respectively. In addition, surviving and degenerating neurons were morphologically confirmed by neuronal nuclei immunohistochemical staining and Fluoro-Jade C staining, respectively, four days after ischemia. Changes of glial morphology were visualized by immunohistochemical staining for each marker such as glial fibrillary acidic protein and ionized calcium-binding protein. Oxidative stress was determined by measurements of dihydroethidium, O2· (formation of formazan) and malondialdehyde two days after ischemia. In addition, glutathione redox system such as reduced glutathione, oxidized glutathione levels, glutathione peroxidase, and glutathione reductase activities were measured two days after ischemia. RESULTS Spontaneous motor activity monitoring and passive avoidance tests showed that treatment with 300 mg/kg DME, but not 100 mg/kg, significantly alleviated ischemia-induced memory impairments. In addition, approximately 67 % of mature neurons survived and 29.3 % neurons were degenerated in hippocampal CA1 region four days after ischemia, and ischemia-induced morphological changes in astrocytes and microglia were decreased in the CA1 region after 300 mg/kg DME treatment. Furthermore, treatment with 300 mg/kg DME significantly ameliorated ischemia-induced oxidative stress, such as superoxide formation and lipid peroxidation, two days after ischemia. In addition, ischemia-induced reduction of the glutathione redox system in the hippocampus, assessed two days after the ischemia, was ameliorated by treatment with 300 mg/kg DME. These suggest that DME can potentially reduce ischemia-induced neuronal damage through its antioxidant properties.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Frazaei MH, Nouri R, Arefnezhad R, Pour PM, Naseri M, Assar S. A Review of Medicinal Plants and Phytochemicals for the Management of Gout. Curr Rheumatol Rev 2024; 20:223-240. [PMID: 37828678 DOI: 10.2174/0115733971268037230920072503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
Abstract
Gout, characterized by elevated uric acid levels, is a common inflammatory joint disease associated with pain, joint swelling, and bone erosion. Existing treatments for gout often result in undesirable side effects, highlighting the need for new, safe, and cost-effective anti-gout drugs. Natural products, including medicinal plants and phytochemicals, have gained attention as potential sources of anti-gout compounds. In this review, we examined articles from 2000 to 2020 using PubMed and Google Scholar, focusing on the effectiveness of medicinal plants and phyto-chemicals in managing gout. Our findings identified 14 plants and nine phytochemicals with anti-gout properties. Notably, Teucrium polium, Prunus avium, Smilax riparia, Rhus coriaria, Foenic-ulum vulgare, Allium cepa, Camellia japonica, and Helianthus annuus exhibited the highest xa-thine oxidase inhibitory activity, attributed to their unique natural bioactive compounds such as phenolics, tannins, coumarins, terpenoids, and alkaloids. Herbal plants and their phytochemicals have demonstrated promising effects in reducing serum urate and inhibiting xanthine. This review aims to report recent studies on plants/phytochemicals derived from herbs beneficial in gout and their different mechanisms.
Collapse
Affiliation(s)
- Mohammad Hosein Frazaei
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roghayeh Nouri
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Arefnezhad
- Anatomical Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Mohammadi Pour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Dihydroconiferyl Ferulate Isolated from Dendropanax morbiferus H.Lév. Suppresses Stemness of Breast Cancer Cells via Nuclear EGFR/c-Myc Signaling. Pharmaceuticals (Basel) 2022; 15:ph15060664. [PMID: 35745583 PMCID: PMC9231027 DOI: 10.3390/ph15060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the leading cause of global cancer incidence and breast cancer stem cells (BCSCs) have been identified as the target to overcome breast cancer in patients. In this study, we purified a BCSC inhibitor from Dendropanax morbiferus H.Lév. leaves through several open column and high-performance liquid chromatography via activity-based purification. The purified cancer stem cell (CSC) inhibitor was identified as dihydroconiferyl ferulate using nuclear magnetic resonance and mass spectrometry. Dihydroconiferyl ferulate inhibited the proliferation and mammosphere formation of breast cancer cells and reduced the population of CD44high/CD24low cells. Dihydroconiferyl ferulate also induced apoptosis, inhibited the growth of mammospheres and reduced the level of total and nuclear EGFR protein. It suppressed the EGFR levels, the interaction of Stat3 with EGFR, and c-Myc protein levels. Our findings show that dihydroconiferyl ferulate reduced the level of nuclear epidermal growth factor receptor (EGFR) and induced apoptosis of BCSCs through nEGFR/Stat3-dependent c-Myc deregulation. Dihydroconiferyl ferulate exhibits potential as an anti-CSC agent through nEGFR/Stat3/c-Myc signaling.
Collapse
|
5
|
Hoang HT, Park JS, Kim SH, Moon JY, Lee YC. Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants (Basel) 2022; 11:antiox11050998. [PMID: 35624862 PMCID: PMC9137482 DOI: 10.3390/antiox11050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Recently, utilizing natural bioactive compounds for active ingredients in cosmetics has become a growing worldwide trend. More and more studies aim to identify the sources of herbal ingredients for applications in the pharmaceutical and cosmetic fields. Additionally, in order to optimize the safety of natural ingredients, choosing an environmentally friendly extraction method also plays an important role. In this work, an eco-friendly extraction technique for Dendropanax morbifera using microwave treatment and microwave-assisted Dendropanax morbifera extract (MA-DME) was investigated. The results indicate that higher yields of MA-DME were obtained than with conventional methods and that D. morbifera’s antioxidant properties were enhanced. Moreover, we found that MA-DME exhibited extraordinary antioxidant, anti-aging, and skin-whitening activities. We suggest MA-DME as a potential cosmeceutical ingredient than could be utilized for comprehensive protection of human skin.
Collapse
Affiliation(s)
- Hien Thi Hoang
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
| | - Jae-Seok Park
- Nature Fairy Co., Ltd., 3F, 28-27, Dongseo-ro 857 beon-gil, Siheung-si 14983, Korea;
| | - Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul 02876, Korea
- Correspondence: (J.-Y.M.); (Y.-C.L.)
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
- Well Scientific Laboratory Ltd., 305, 3F, Mega-center, SKnTechnopark, 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea
- Correspondence: (J.-Y.M.); (Y.-C.L.)
| |
Collapse
|
6
|
Laxative Effects of a Standardized Extract of Dendropanax morbiferus H. Léveille Leaves on Experimental Constipation in Rats. Medicina (B Aires) 2021; 57:medicina57111147. [PMID: 34833365 PMCID: PMC8619072 DOI: 10.3390/medicina57111147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: This study aimed at investigating the laxative effects of a standardized aqueous extract of Dendropanax morbiferus H. Lév. on two different constipation rat models. Materials and Methods: Animal studies were conducted with low-fiber diet-induced and loperamide-induced constipation animal models, and isolated colons were used in ex vivo analysis to determine the changes in colonic motility caused by D. morbiferus H. Lév. leaf extract (DPL). Results: The results showed that DPL administration significantly improved certain reduced fecal parameters (number, weight, and water content of the stools) in a both low-fiber diet and loperamide-induced constipation models without adverse effects of diarrhea. The laxative effect of DPL was confirmed to improve the charcoal excretion time upon DPL treatment in a low-fiber diet or loperamide-induced constipation model through gastrointestinal (GI) motility evaluation using the charcoal meal test. In addition, when DPL was administered to RAW264.7 cells and loperamide-induced constipation model rats, the production of prostaglandin E2 (PGE2) increased significantly in cells and tissue. Furthermore, DPL dose-dependently stimulated the spontaneous contractile amplitude and frequency of the isolated rat colon. Conclusion: Although our study did not provide information on the acute or chronic toxicity of DPL, our results demonstrated that DPL can effectively promote defecation frequency and rat colon contraction, providing scientific evidence to support the use of DPL as a therapeutic application. However, further toxicity studies of DPL are needed prior to the initiation of clinical trials and clinical applications.
Collapse
|
7
|
Balakrishnan R, Cho DY, Su-Kim I, Choi DK. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants (Basel) 2020; 9:antiox9100962. [PMID: 33049991 PMCID: PMC7601828 DOI: 10.3390/antiox9100962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.
Collapse
|
8
|
Park HJ, Kwak M, Baek SH. Neuroprotective effects of Dendropanax morbifera leaves on glutamate-induced oxidative cell death in HT22 mouse hippocampal neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112518. [PMID: 31884031 DOI: 10.1016/j.jep.2019.112518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendropanax morbifera (DM) has long been used as a traditional herbal medicine for migraines. Glutamate toxicity and oxidative stress have emerged as the possible triggers implicated in migraine pathogenesis. AIM OF THE STUDY We aimed to examine the neuroprotective effects of DM leaves (DML) on glutamate-induced oxidative cell death in HT22 mouse hippocampal neuronal cells. MATERIALS AND METHODS Molecular authentication of DML was assessed using DNA barcoding analysis. Four different solvent extracts of DML were prepared and subjected to antioxidant activity and phytochemical assays. Neuroprotective effects of DML extracts were evaluated using relevant biochemical and imaging assays that measure cell viability/death, ROS generation, Ca2+ levels, mitochondrial dysfunction, and AIF nuclear translocation. RESULTS The sequences of matK, rbcL, atpF-H, and psbK-I in DML were identical with those in voucher specimens, confirming that DML was indeed D. morbifera. The ethyl acetate extract of DML (DMLE) showed the highest flavonoid and phenolic content, and prominent DPPH/superoxide radical scavenging and reducing power activities. In the HT22 cell model, glutamate was shown to be the causative agent for apoptotic cell death via elevation of intracellular ROS and Ca2+ levels, induction of mitochondrial depolarization and membrane permeabilization, and translocation of AIF to the nucleus. Of note, N-acetyl-L-cysteine and necrostatin-1, but not z-VAD-fmk, completely prevented glutamate-induced cell death, implying that oxidative stress and AIF translocation were pivotal in glutamate cytotoxicity. DMLE significantly recovered glutamate-induced apoptotic cell death in a concentration-dependent manner. It completely inhibited intracellular/mitochondrial ROS generation, the elevation of Ca2+ levels, and mitochondrial dysfunction induced by glutamate during early exposure within 8 h. It significantly reversed subsequent AIF nuclear translocation after 12 h of treatment. Antioxidant activities of DMLE may be the protective mechanism that regulates homeostatic balance of ROS and Ca2+ as well as maintains mitochondrial function. CONCLUSIONS DMLE shows significant neuroprotective effects against glutamate-induced oxidative neuronal cell death. Therefore, DM could be a potential therapeutic candidate for neurological disorders propagated by glutamate toxicity.
Collapse
Affiliation(s)
- Hye-Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499, Republic of Korea.
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|