1
|
Chorti-Tripsa E, Galanis VZ, Constantinides TC, Kontogiorgis C. Natural Products from the Mediterranean Area as Wound Healing Agents-In Vitro Studies: A Systematic Review. Antioxidants (Basel) 2025; 14:484. [PMID: 40298830 DOI: 10.3390/antiox14040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Wound healing is a process that happens when lost tissue replenishes. For this process, both protective elements and wound healing accelerating factors are required. In recent years, the search for natural products that promote faster healing and prevent adverse effects has gained momentum. This is a systematic review, adhering to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) criteria, of the wound healing effects of natural products, with a focus on natural products from the Mediterranean region. This study sourced the PubMed and Scopus databases for eligible articles and publications over the last six years. Due to the information volume, only the in vitro studies were included in this review. The criteria set concluded in the 28 studies included. These studies showed that many natural products found in the Mediterranean have been studied for the treatment of wounds. The wound healing effect seems to be related to dose, type of wounded tissue, and application time. Moreover, half of the studies were additionally tested and shown antioxidant activity through DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and FRAP (Ferric Reducing Antioxidant Power) assays.
Collapse
Affiliation(s)
- Eleftheria Chorti-Tripsa
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Vasilis-Zois Galanis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theodoros C Constantinides
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
2
|
Solgi M, Bagnazari M, Mohammadi M, Azizi A. Thymbra spicata extract and arbuscular mycorrhizae improved the morphophysiological traits, biochemical properties, and essential oil content and composition of Rosemary (Rosmarinus officinalis L.) under salinity stress. BMC PLANT BIOLOGY 2025; 25:220. [PMID: 39966716 PMCID: PMC11834213 DOI: 10.1186/s12870-025-06221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Enhancing the content of essential oils and valuable secondary metabolites is a primary goal for medicinal plant breeders. In this study, the effects of Thymbra spicata extract at concentrations of 0% (C), 10% (TS1), and 20% (TS2), along with mycorrhizal fungus (MF) biofertilizer at a rate of 50 g/2.5 kg of soil, were evaluated on the growth, photosynthetic pigments, relative water content (RWC), proline, protein, malondialdehyde (MDA), catalase (CAT), phenylalanine ammonia-lyase (PAL), and essential oil content and composition of Rosmarinus officinalis L. under varying salinity stress levels of 0 mM (S0), 100 mM (S1), and 200 mM (S2) NaCl. The experiment was conducted as a factorial study within a completely randomized design, with three replications. RESULTS As salinity stress increased, the yield and growth characteristics of the plants declined. However, the applied treatments effectively mitigated the negative effects of salinity. The highest chlorophyll a, b, and total chlorophyll contents were observed in the TS2 + MF treatment under nonsaline conditions. Under S2 salinity stress, carotenoid and anthocyanin contents increased by 38.29% and 11.11%, respectively, with the use of TS2 + MF. Under S1 stress conditions, the proline and soluble sugar content increased by 268% and 44%, respectively, in the MF treatment. Essential oil content was enhanced by 80.43% with the TS2 + MF treatment under S1 stress. Essential oil analysis showed significant increases in camphene (9.71%), β-pinene (43.75%), α-phellandrene (13.3%), geranyl acetate (156%), cineole (21.39%), and β-linalool (5.12%) in the TS2 + MF treatment compared to the control under S1 stress conditions. CONCLUSIONS Among all the treatments, the combined application of TS2 and MF proved to be the most effective in enhancing the morphophysiological and biochemical characteristics of rosemary plants. This treatment not only boosted the production of essential oils and secondary metabolites but also mitigated the detrimental effects of salinity stress. Therefore, it is recommended as a beneficial agricultural practice for improving the productivity and quality of rosemary plants under salinity stress.
Collapse
Affiliation(s)
- Mojtaba Solgi
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran
| | - Majid Bagnazari
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran.
| | - Meisam Mohammadi
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran
| | - Afsaneh Azizi
- Department of Horticultural Sciences, College of Agriculture, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
3
|
Khalil M, Abdallah H, Calasso M, Khalil N, Daher A, Missaoui J, Diab F, Zeaiter L, Vergani L, Di Ciaula A, Portincasa P. Herbal Medicine in Three Different Mediterranean Living Areas During the COVID-19 Pandemic: The Role of Polyphenolic-Rich Thyme-like Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3340. [PMID: 39683135 PMCID: PMC11644039 DOI: 10.3390/plants13233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Despite herbal medicine being popular across the Mediterranean basin, there is no evidence in favor of COVID-19 infection. This study investigates the utilization and effects of medicinal plants in Italy, Lebanon, and Tunisia during COVID-19 and its effects on post-COVID-19 pandemics. We used a tailored, web-based "Google Form" questionnaire with the random sampling method. We gathered 812 complete responses (Italy: 116, Lebanon: 557, and Tunisia: 139), revealing diverse demographics and symptom experiences. Fatigue prevailed across all groups (89.0-94.2%), while psychological impacts ranged from 20.1% to 30.9%, with higher rates in Lebanon. Post-COVID-19 symptoms affected 22.4% (Italy), 48.8% (Lebanon), and 31.7% (Tunisia). General use of herbs was consistent (41.4-50.4%), with 23.3% (Italy), 50.2% (Lebanon), and 65.5% (Tunisia) employing herbs for COVID-19 therapy. Notably, in Lebanon, Za'atar, a thyme-like plant, correlated with reduced symptoms, suggesting potential protective effects that are likely due to its polyphenol richness. This study underscores the persistent reliance on traditional medicinal plants remedies in the Mediterranean area, with regional variations. Further exploration of herbal compounds for COVID-19-like symptoms is warranted.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy;
| | - Nour Khalil
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon; (N.K.); (A.D.)
| | - Ahmad Daher
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon; (N.K.); (A.D.)
| | - Jihen Missaoui
- Research Laboratory of BIORESSOURCES—Integrative Biology & Valorisation BIOLIVAL (LR14 ES06) at ISBM, Monastir 5000, Tunisia;
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.D.); (L.Z.); (L.V.)
| | - Lama Zeaiter
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.D.); (L.Z.); (L.V.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.D.); (L.Z.); (L.V.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| |
Collapse
|
4
|
Diab F, Zbeeb H, Zeaiter L, Baldini F, Pagano A, Minicozzi V, Vergani L. Unraveling the metabolic activities of bioactive compounds on cellular models of hepatosteatosis and adipogenesis through docking analysis with PPARs. Sci Rep 2024; 14:28196. [PMID: 39548141 PMCID: PMC11568224 DOI: 10.1038/s41598-024-78374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Obesity is associated with fatty liver disease. Available therapies show modest efficacy, and nutraceuticals with good effectiveness and safety are largely investigated. We focused on five natural compounds, three plant phenolic compounds (carvacrol, rosmarinic acid, silybin), and two thyroid hormones (T2: 3,5-diiodo-l-thyronine; T3: 3,5,3'-triiodo-L-thyronine) as comparison, to assess their beneficial effects on two cellular models of hepatosteatosis and adipogenesis. All compounds ameliorated the lipid accumulation and oxidative stress in both models, but with different potencies. The peroxisome proliferator-activated receptors (PPARs) are pivotal controllers of adipogenesis and lipid metabolism. For the main isoforms, PPARγ and PPARa, we assessed their possible binding to the compounds by molecular docking calculations, and their expression pattern by real-time PCR. All compounds bind both PPARs with different affinity, while not all compounds affect their expression. The results may clarify the distinctive molecular mechanisms underlying the action of the five compounds in the different cell models with possible applications to treat obesity.
Collapse
Affiliation(s)
- Farah Diab
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Hawraa Zbeeb
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lama Zeaiter
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- Istituto Italiano Tecnologia, Genova, Italy
| | | | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata and INFN - Section of Rome Tor Vergata, Rome, Italy
| | - Laura Vergani
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
5
|
Maleki M, Ghaneialvar H, Abbasi N, Moayeri A, Moulaei N, Kenarkoohi A, Mokaribahar P, Heidari A. Effects of Thymbra spicata extract and Thymol on morphine withdrawal syndrome in mice (insights to the liver function, antioxidant, and behavioral responses). Cell Biochem Funct 2024; 42:e4084. [PMID: 38963282 DOI: 10.1002/cbf.4084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Safe chemicals for drug withdrawal can be extracted from natural sources. This study investigates the effects of clonidine and Thymbra spicata extract (TSE) on mice suffering from morphine withdrawal syndrome. Thymol, which is the active constituent in TSE, was also tested. A total of 90 mice were divided into nine groups. Group 1 was the control group, while Group 2 was given only morphine, and Group 3 received morphine and 0.2 mg/kg of clonidine. Groups 4-6 were given morphine along with 100, 200, and 300 mg/kg of TSE, respectively. Groups 7-9 received morphine plus 30, 60, and 90 mg/kg of Thymol, respectively, for 7 days. An oral naloxone challenge of 3 mg/kg was used to induce withdrawal syndrome in all groups. Improvement of liver enzyme levels (aspartate aminotransferase, alkaline phosphatase, and alanine transaminase) (p < .01) and behavioral responses (frequencies of jumping, frequencies of two-legged standing, Straub tail reaction) (p < .01) were significantly observed in the groups receiving TSE and Thymol (Groups 4-9) compared to Group 2. Additionally, antioxidant activity in these groups was improved compared to Group 2. Nitric oxide significantly decreased in Groups 4 and 6 compared to Groups 2 and 3 (p < .01). Superoxide dismutase increased dramatically in Groups 5, 8, and 9 compared to Groups 2 and 3 (p < .01). Groups 5-9 were significantly different from Group 2 in terms of malondialdehyde levels (p < .01). Certain doses of TSE and Thymol were found to alleviate the narcotics withdrawal symptoms. This similar effect to clonidine can pave the way for their administration in humans.
Collapse
Affiliation(s)
- Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Ardeshir Moayeri
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Neda Moulaei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Pegah Mokaribahar
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Heidari
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
6
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
7
|
Diab F, Beghelli D, Nuccitelli A, Lupidi G, Khalil M, Portincasa P, Vergani L. Supplementation with Thymbra spicata extract ameliorates lifespan, body-weight gain and Paraquat-induced oxidative stress in Drosophila melanogaster: An age- and sex-related study. J Funct Foods 2024; 114:106078. [DOI: 10.1016/j.jff.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
8
|
Khalil M, Piccapane F, Vacca M, Celano G, Mahdi L, Perniola V, Apa CA, Annunziato A, Iacobellis I, Procino G, Calasso M, De Angelis M, Caroppo R, Portincasa P. Nutritional and Physiological Properties of Thymbra spicata: In Vitro Study Using Fecal Fermentation and Intestinal Integrity Models. Nutrients 2024; 16:588. [PMID: 38474717 PMCID: PMC10934825 DOI: 10.3390/nu16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.)
| | - Francesca Piccapane
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (F.P.); (G.P.); (R.C.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Giuseppe Procino
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (F.P.); (G.P.); (R.C.)
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.V.); (G.C.); (C.A.A.); (A.A.); (I.I.); (M.C.); (M.D.A.)
| | - Rosa Caroppo
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (F.P.); (G.P.); (R.C.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.)
| |
Collapse
|
9
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
10
|
Zbeeb H, Khalifeh H, Lupidi G, Baldini F, Zeaiter L, Khalil M, Salis A, Damonte G, Vergani L. Polyphenol-enriched extracts of Sarcopoterium spinosum fruits for counteracting lipid accumulation and oxidative stress in an in vitro model of hepatic steatosis. Fitoterapia 2024; 172:105743. [PMID: 37952761 DOI: 10.1016/j.fitote.2023.105743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Sarcopoterium spinosum (L.) Spach is a Rosaceae shrub employed in the folk medicine in the Eastern Mediterranean basin. The previous few studies have focused on the S. spinosum roots, while the fruits have been poorly investigated. The present study aims to assess the biological properties of S. spinosum fruits collected in Lebanon and subjected to ethanolic, water or boiling water extraction. The extracts were compared for the phenol and flavonoid contents, and for the in vitro radical scavenging ability. The ethanolic extract (SEE) was selected and characterized by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) showing a phenolome rich in tannins (ellagitannins), flavonoids (quercetin derivatives), and triterpenes. The biological activity of SEE was tested on a cellular model of moderate steatosis consisting of lipid-loaded hepatic cells treated with increasing concentrations of SEE (1-25 μg/mL), or with corilagin or quercetin as comparison. In steatotic hepatocytes the SEE was able (i) to ameliorate the hepatosteatosis; (ii) to counteract the excess ROS and lipid peroxidation; (iii) to restore the impaired catalase activity. The results indicate that the ethanolic extract from S. spinosum fruits is endowed with relevant antisteatotic and antioxidant activities and might find application as nutraceutical product.
Collapse
Affiliation(s)
- Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy
| | - Hala Khalifeh
- Department of Biology, Laboratory Rammal Rammal (ATAC), Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Francesca Baldini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Lama Zeaiter
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Mohamad Khalil
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy.
| |
Collapse
|
11
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
12
|
Elshibani FA, Mohammed HA, Abouzied AS, Kh. Abdulkarim A, Khan RA, Almahmoud SA, Huwaimel B, Alamami AJ. Phytochemical and biological activity profiles of Thymbra linearifolia: An exclusively native species of Libyan Green Mountains. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
13
|
Khalil M, Abdallah H, Razuka-Ebela D, Calasso M, De Angelis M, Portincasa P. The Impact of Za'atar Antioxidant Compounds on the Gut Microbiota and Gastrointestinal Disorders: Insights for Future Clinical Applications. Antioxidants (Basel) 2023; 12:426. [PMID: 36829984 PMCID: PMC9952350 DOI: 10.3390/antiox12020426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes in its composition can be associated with disease states through the promotion of immune-mediated inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment of intestinal barrier function. Za'atar is one of the most popular plant-based foods in the Eastern Mediterranean region. Za'atar is a mixture of different plant leaves, fruits, and seeds and contains hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za'atar compounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and gastrointestinal diseases. Antioxidants such as Za'atar polyphenols may provide beneficial effects in the complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no studies have reported the effects of the whole Za'atar mixture, however, based on the pre-clinical studies published on components and single compounds found in Za'atar, we provide a clinical overview of the possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid, and other polyphenols. We also cover the potential clinical applications of Za'atar mixture as a possible nutraceutical in disorders involving the gastrointestinal tract.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Danute Razuka-Ebela
- Institute of Clinical and Preventive Medicine, University of Latvia, 1586 Riga, Latvia
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| |
Collapse
|
14
|
Diab F, Khalil M, Lupidi G, Zbeeb H, Salis A, Damonte G, Bramucci M, Portincasa P, Vergani L. Influence of Simulated In Vitro Gastrointestinal Digestion on the Phenolic Profile, Antioxidant, and Biological Activity of Thymbra spicata L. Extracts. Antioxidants (Basel) 2022; 11:1778. [PMID: 36139852 PMCID: PMC9495638 DOI: 10.3390/antiox11091778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plants or plant extracts are widely investigated for preventing/counteracting several chronic disorders. The oral route is the most common route for nutraceutical and drug administration. Currently, it is still unclear as to whether and how the pattern of phenolic compounds (PCs) found in the plants as well as their bioactivity could be modified during the gastrointestinal transit. Recent studies have revealed antioxidant and anti-steatotic properties of Thymbra spicata. Here, we investigated the possible loss of phytochemicals that occurs throughout the sequential steps of a simulated in vitro gastrointestinal (GI) digestion of aqueous and ethanolic extracts of aerial parts of T. spicata. Crude, digested, and dialyzed extracts were characterized in terms of their phenolic profile and biological activities. Total contents of carbohydrates, proteins, PCs, flavonoids, and hydroxycinnamic acids were quantified. The changes in the PC profile and in bioactive compounds upon the simulated GI digestion were monitored by HPLC-MS/MS analysis. The antioxidant activity was measured by different spectrophotometric assays, and the antiproliferative potential was assessed by using three representative human cancer cell lines. We observed that the simulated GI digestion reduced the phytochemical contents in both aqueous and ethanolic T. spicata extracts and modified the PC profile. However, T. spicata extracts improved their antioxidant potential after digestion, while a partial reduction in the antiproliferative activity was observed for the ethanolic extract. Therefore, our results could provide a scientific basis for the employment of T. spicata extract as valuable nutraceutical.
Collapse
Affiliation(s)
- Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
15
|
Khalil M, Serale N, Diab F, Baldini F, Portincasa P, Lupidi G, Vergani L. Beneficial Effects of Carvacrol on In Vitro Models of Metabolically-Associated Liver Steatosis and Endothelial Dysfunction: A Role for Fatty Acids in Interfering with Carvacrol Binding to Serum Albumin. Curr Med Chem 2022; 29:5113-5129. [PMID: 35366761 DOI: 10.2174/0929867329666220401103643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carvacrol, a plant phenolic monoterpene, is largely employed as food additive and phytochemical. OBJECTIVE We aimed to assess the lipid lowering and protective effects of carvacrol in vitro using cellular models of hepatic steatosis and endothelial dysfunction. We also investigated if and how the binding of carvacrol to albumin, the physiological transporter for small compounds in the blood, might be altered by the presence of high levels of fatty acids (FAs). METHODS Hepatic FaO cells treated with exogenous FAs mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured spectrophotometrically lipid accumulation and release, lipoperoxidation, free radical production, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin in the presence or absence of high levels of FAs was assessed by absorption and emission spectroscopies. RESULTS Carvacrol counteracted lipid accumulation and oxidative stress in hepatocytes and protected endothelial cells from oxidative stress and dysfunction. Moreover, high levels of FAs reduced the binding of carvacrol to albumin. CONCLUSION The results suggest the good potential of carvacrol in ameliorating dysfunction of hepatic and endothelial cells in vitro. High levels of circulating FAs might compete with carvacrol for binding to albumin thus influencing its transport and bio-distribution.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Italy
| | - Nadia Serale
- Clinica Medica "A. Murri", Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Italy
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Haly
| | - Francesca Baldini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Haly
| |
Collapse
|
16
|
Diab F, Zbeeb H, Baldini F, Portincasa P, Khalil M, Vergani L. The Potential of Lamiaceae Herbs for Mitigation of Overweight, Obesity, and Fatty Liver: Studies and Perspectives. Molecules 2022; 27:5043. [PMID: 35956991 PMCID: PMC9370348 DOI: 10.3390/molecules27155043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous plants, plant extracts, and plant-derived compounds are being explored for their beneficial effects against overweight and liver diseases. Obesity is associated with the increased prevalence of non-alcoholic fatty liver disease (NAFLD), becoming the most common liver disease in Western countries. Obesity and NAFLD are closely associated with many other metabolic alternations such as insulin resistance, diabetes mellitus, and cardiovascular diseases. Many herbs of the Lamiaceae family are widely employed as food and spices in the Mediterranean area, but also in folk medicine, and their use for the management of metabolic disorders is well documented. Hereby, we summarized the scientific results of the medicinal and nutraceutical potential of plants from the Lamiaceae family for prevention and mitigation of overweight and fatty liver. The evidence indicates that Lamiaceae plants may be a cost-effective source of nutraceuticals and/or phytochemicals to be used in the management of metabolic-related conditions such as obesity and NAFLD. PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets.
Collapse
Affiliation(s)
- Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Francesca Baldini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy
| |
Collapse
|
17
|
Xiao L, Lu X, Yang H, Lin C, Li L, Ni C, Fang Y, Mo S, Zhan R, Yan P. The Antioxidant and Hypolipidemic Effects of Mesona Chinensis Benth Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113423. [PMID: 35684361 PMCID: PMC9182326 DOI: 10.3390/molecules27113423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
In this study, the antioxidant and hypolipidemic effects of Mesona Chinensis Benth (MCB) extracts were evaluated. Seven fractions (F0, F10, F20, F30, F40, F50 and MTF) were obtained from the MCB ethanol extracts. Compared to the commercial antioxidants (vitamin C), MTF and F30 exhibited higher antioxidant activities in the antiradical activity test and the FRAP assay. The half-inhibition concentration (IC50) for MTF and F30 were 5.323 µg/mL and 5.278 µg/mL, respectively. MTF at 200 µg/mL significantly decreased the accumulation of TG in oleic acid (OA)-induced HepG2 cells and reversed the inhibitory effect of Compound C on AMPK (MTF and F30 significantly increased the glucose utilization of insulin-induced HepG2 cells). In addition, the components of MTF were identified by HPLC-MS, which were caffeic acid, quercetin 3-O-galactoside, isoquercetin, astragalin, rosmarinic acid, aromadendrin-3-O-rutinoside, rosmarinic acid-3-O-glucoside and kaempferol-7-O-glucoside. Through statistical correlations by Simca P software, it was found that the main antioxidant and hypolipidemic components of MCB might be caffeic acid, kaempferol-7-O-glucoside, rosmarinic acid-3-O-glucoside and aromadendrin-3-O-rutinoside, which may play important roles in the AMPK pathway. MTF and F30 in MCB could be potential health products for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Luhua Xiao
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Xiaoying Lu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Huilin Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Cuiqing Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Le Li
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Chen Ni
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Yuan Fang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Suifen Mo
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Ruoting Zhan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
- Correspondence: (R.Z.); (P.Y.); Tel.:+86-020-3935-8045 (R.Z.); +86-020-3935-8331 (P.Y.)
| | - Ping Yan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
- Correspondence: (R.Z.); (P.Y.); Tel.:+86-020-3935-8045 (R.Z.); +86-020-3935-8331 (P.Y.)
| |
Collapse
|
18
|
Khalil M, Rita Caponio G, Diab F, Shanmugam H, Di Ciaula A, Khalifeh H, Vergani L, Calasso M, De Angelis M, Portincasa P. Unraveling the beneficial effects of herbal Lebanese mixture “Za’atar”. History, studies, and properties of a potential healthy food ingredient. J Funct Foods 2022; 90:104993. [DOI: 10.1016/j.jff.2022.104993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Toker EB, Yeşilbağ K. In vitro antiviral activity of Thymbra spicata L. extract on bovine respiratory viruses (BCoV, BPIV-3, BRSV, BVDV and BoHV-1). J Appl Microbiol 2021; 132:2625-2632. [PMID: 34919314 DOI: 10.1111/jam.15418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
AIMS Viral pathogens are the primary agents in bovine respiratory disease cases, and there is no direct effective antiviral drug application. Thymbra is a genus of oregano commonly found in Turkey. The primary component (34.9%) of the extract obtained from Thymbra spicata L. is the carvacrol which is used in traditional medicine. This study evaluates the potential antiviral activity and inactivation efficiency of T. spicata L. extract against bovine respiratory viruses, including BCoV, BPIV-3, BRSV, BVDV and BoHV-1. METHODS AND RESULTS To evaluate its effect on viral replication, viral titres were taken from infected cells treated with non-cytotoxic T. spicata L. extract concentrations (0.75% and 1.5%, 1.32 and 2.64 µg/ml of carvacrol as active ingredient, respectively) and compared to non-treated infected cells. The viruses were treated directly with 1.5% T. spicata L. extract, and the viral titres were evaluated at certain time points to determine the efficiency of direct inactivation. The number of infectious virions for BCoV, BPIV-3, BRSV, BVDV and BoHV-1 treated with 1.5% T. spicata L. extract were decreased by 99.44%, 100.0%, 94.38%, 99.97% and 99.87%, respectively.T. spicata L. extract strongly inhibits the replication of mentioned viruses in a dose-dependent manner in vitro. In addition, T. spicata L. extract shared direct inactivation efficiency on the mentioned viruses in a time-dependent manner. CONCLUSION This study shows the antiviral efficiency of T. spicata L. on BRD-related viral agents for the first time. The oregano species T. spicata and its main component, carvacrol, may have a potential for antiviral activity in the alternative treatment of respiratory viral diseases in cattle. SIGNIFICANCE AND IMPACT OF THE STUDY Given the similarity of replication strategies, obtained data suggest the possible efficiency of T. spicata L. on human respiratory viruses.
Collapse
Affiliation(s)
- Eda Baldan Toker
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Kadir Yeşilbağ
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
20
|
Khalil M, Bazzi A, Zeineddine D, Jomaa W, Daher A, Awada R. Repressive effect of Rhus coriaria L. fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113748. [PMID: 33359864 DOI: 10.1016/j.jep.2020.113748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhus coriaria L. represents a herbal shrub that is used widely in traditional medicine in the Middle East region to treat different diseases including inflammation-related disorders. R. coriaria extracts have been well characterized in terms of their biological activities, pharmacological potential and phytochemical components. However, the effect of R. coriaria on neuro-inflammation has not been studied previously in detail. AIM OF THE STUDY In the present study, we performed a qualitative phytochemical analysis and investigated the antioxidant and anti-neuro-inflammatory potential of R. coriaria extracts on BV-2 microglial cells. MATERIALS AND METHODS R. coriaria extracts were prepared using two different solvents: distilled water and ethanol. Phytochemical screening was performed to determine the principal bioactive components. The radical scavenging activity was assessed by DPPH method (2,2-diphenyl-1-picrylhydrazyl). The effect of R. coriaria on neuro-inflammation was studied upon measuring the production of oxidative stress and inflammatory factors using DCF (2',7'-dichlorofluorescein) and Nitric oxide (NO) assays respectively, and by analyzing the mRNA (TNFα, IL-10, iNOS and COX-2) and protein (NFκβ) levels of genes involved BV-2 microglia cells-mediated inflammation using quantitative Real Time PCR and Western blot, respectively. RESULTS We found that R. coriaria extracts contain high phenolic and flavonoid contents. Interestingly, the ethanolic extract exerted a potent anti-inflammatory potential on insulted BV-2 cells manifested by: i) inhibition of Reactive Oxygen species (ROS) production and nitric oxide (NO) release; ii) suppressing TNFα, iNOS and COX-2 mRNA levels; iii) reducing NFκβ activation; and iiii) enhancing IL-10 transcription levels. CONCLUSION Our results indicate that the neuro-inflammation inhibitory activity of R. coriaria extracts involves the inhibition of NF-κB signaling pathway. These findings suggest that R. coriaria might carry therapeutic potential against neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohamad Khalil
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Ali Bazzi
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon
| | - Dana Zeineddine
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon
| | - Wissam Jomaa
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon
| | - Ahmad Daher
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon; Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Lebanon
| | - Rana Awada
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon; Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Lebanon.
| |
Collapse
|
21
|
Dietary Polyphenols and Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:nu13020494. [PMID: 33546130 PMCID: PMC7913263 DOI: 10.3390/nu13020494] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which is emerging as a major public health issue worldwide, is characterized by a wide spectrum of liver disorders, ranging from simple fat accumulation in hepatocytes, also known as steatosis, to non-alcoholic steatohepatitis (NASH) and cirrhosis. At present, the pharmacological treatment of NAFLD is still debated and dietary strategies for the prevention and the treatment of this condition are strongly considered. Polyphenols are a group of plant-derived compounds whose anti-inflammatory and antioxidant properties are associated with a low prevalence of metabolic diseases, including obesity, hypertension, and insulin resistance. Since inflammation and oxidative stress are the main risk factors involved in the pathogenesis of NAFLD, recent studies suggest that the consumption of polyphenol-rich diets is involved in the prevention and treatment of NAFLD. However, few clinical trials are available on human subjects with NAFLD. Here, we reviewed the emerging existing evidence on the potential use of polyphenols to treat NAFLD. After introducing the physiopathology of NAFLD, we focused on the most investigated phenolic compounds in the setting of NAFLD and described their potential benefits, starting from basic science studies to animal models and human trials.
Collapse
|
22
|
Baldini F, Fabbri R, Eberhagen C, Voci A, Portincasa P, Zischka H, Vergani L. Adipocyte hypertrophy parallels alterations of mitochondrial status in a cell model for adipose tissue dysfunction in obesity. Life Sci 2021; 265:118812. [PMID: 33278396 DOI: 10.1016/j.lfs.2020.118812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
AIMS Adipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated in vitro the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction. MAIN METHODS As model of adipocyte hypertrophy, we employed 3T3-L1 preadipocytes firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids. As a function of differentiation and hypertrophy, we assessed triglyceride content, lipid droplet size, radical homeostasis by spectrophotometry and microscopy, as well as the expression of PPARγ, adiponectin and metallothioneins. Mitochondrial status was investigated by electron microscopy, oxygraph 2 k (O2K) high-resolution respirometry, fluorimetry and western blot. KEY FINDINGS Compared to mature adipocytes, hypertrophic adipocytes showed increased triglyceride accumulation and lipid peroxidation, larger or unique lipid droplet, up-regulated expression of PPARγ, adiponectin and metallothioneins. At mitochondrial level, early-hypertrophic adipocytes exhibited: (i) impaired mitochondrial oxygen consumption with parallel reduction in the mitochondrial complexes; (ii) no changes in citrate synthase and HSP60 expression, and in the inner mitochondrial membrane polarization; (iii) no stimulation of mitochondrial fatty acid oxidation. Our findings indicate that the content, integrity, and catabolic activity of mitochondria were rather unchanged in early hypertrophic adipocytes, while oxygen consumption and oxidant production were altered. SIGNIFICANCE In the model of early adipocyte hypertrophy exacerbated oxidative stress and impaired mitochondrial respiration were observed, likely depending on reduction in the mitochondrial complexes, without changes in mitochondrial mass and integrity.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Piero Portincasa
- Division of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University School of Medicine, 70124 Bari, Italy
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University of Munich, School of Medicine, Munich, Germany
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
23
|
Khalil M, Khalifeh H, Saad F, Serale N, Salis A, Damonte G, Lupidi G, Daher A, Vergani L. Protective effects of extracts from Ephedra foeminea Forssk fruits against oxidative injury in human endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112976. [PMID: 32428657 DOI: 10.1016/j.jep.2020.112976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedra foeminea is a member of the Ephedraceae family which is widespread in the eastern Mediterranean area. In Lebanon, Ephedra is a popular remedy in traditional medicine to prevent and/or counteract many stress oxidative-related diseases like inflammation and bacterial infections. AIM OF THE STUDY Oxidative stress leads to endothelial cell dysfunction, and is a major factor contributing to etiology of atherosclerosis and related diseases. This study aims to investigate the antioxidant and cytoprotective potential of extracts from E. foeminea fruits on human endothelial cells exposed to hydrogen peroxide (H2O2) to mimic in vitro vascular endothelium dysfunction. MATERIALS AND METHODS Different extracts of E. foeminea fruits were prepared using pure ethanol (EE), methanol/water (EMW), pure hexane (Ehex) or ethyl acetate/water (Epoly) as extraction solvents. The phenolome profile of each extract was characterized using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Total phenolic and flavonoid content, and radical scavenging properties of the extracts were assessed spectrophotometrically. Then, the effects on human endothelial cells HECV were evaluated. RESULTS Epoly extract showed the highest phenol and flavonoid content, and the highest radical scavenging capacity. On H2O2-insulted HECV cells Epoly was able: (i) to counteract the ROS/RNS production and lipid peroxidation; (ii) to rescue the ROS-dependent decrease in the mitochondrial membrane potential; (iii) to counteract the apoptosis induction; (iv) to restore endothelial cell viability and migration. CONCLUSIONS The findings indicated that the polyphenol-enriched extract Epoly from E. foeminea fruits is endowed with in vitro anti-oxidant and anti-apoptotic effects and might be used as nutraceutical for treating ROS-related endothelium dysfunction and inflammation.
Collapse
Affiliation(s)
- Mohamad Khalil
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy; Department of Biology, Laboratory Rammal Rammal (ATAC), Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Hala Khalifeh
- Department of Biology, Laboratory Rammal Rammal (ATAC), Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Fatima Saad
- Department of Biology, Laboratory Rammal Rammal (ATAC), Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Nadia Serale
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Via Gentile III da varano 26, Camerino, Italy
| | - Ahmad Daher
- Department of Biology, Laboratory Rammal Rammal (ATAC), Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
24
|
Vergani L, Baldini F, Khalil M, Voci A, Putignano P, Miraglia N. New Perspectives of S-Adenosylmethionine (SAMe) Applications to Attenuate Fatty Acid-Induced Steatosis and Oxidative Stress in Hepatic and Endothelial Cells. Molecules 2020; 25:molecules25184237. [PMID: 32942773 PMCID: PMC7570632 DOI: 10.3390/molecules25184237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
S-adenosylmethionine (SAMe) is an endogenous methyl donor derived from ATP and methionine that has pleiotropic functions. Most SAMe is synthetized and consumed in the liver, where it acts as the main methylating agent and in protection against the free radical toxicity. Previous studies have shown that the administration of SAMe as a supernutrient exerted many beneficial effects in various tissues, mainly in the liver. In the present study, we aimed to clarify the direct effects of SAMe on fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Hepatoma FaO cells and endothelial HECV cells exposed to a mixture of oleate/palmitate are reliable models for hepatic steatosis and endothelium dysfunction, respectively. Our findings indicate that SAMe was able to significantly ameliorate lipid accumulation and oxidative stress in hepatic cells, mainly through promoting mitochondrial fatty acid entry for β-oxidation and external triglyceride release. SAMe also reverted both lipid accumulation and oxidant production (i.e., ROS and NO) in endothelial cells. In conclusion, these outcomes suggest promising beneficial applications of SAMe as a nutraceutical for metabolic disorders occurring in fatty liver and endothelium dysfunction.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Earth, Environment and Life Science, University of Genoa, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-0103538403; Fax: +39-0103538267
| | - Francesca Baldini
- Department of Experimemtal Medicine, University of Genoa, 16132 Genova, Italy;
| | - Mohamad Khalil
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Adriana Voci
- Department of Earth, Environment and Life Science, University of Genoa, 16132 Genova, Italy;
| | | | - Niccolò Miraglia
- Clinical & Pre-clinical Development, Gnosis by Lesaffre S.p.A, 20832 Desio, Italy;
| |
Collapse
|
25
|
Khalil M, Khalifeh H, Baldini F, Serale N, Parodi A, Voci A, Vergani L, Daher A. Antitumor Activity of Ethanolic Extract from Thymbra Spicata L. aerial Parts: Effects on Cell Viability and Proliferation, Apoptosis Induction, STAT3, and NF-kB Signaling. Nutr Cancer 2020; 73:1193-1206. [PMID: 32696667 DOI: 10.1080/01635581.2020.1792517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thyme-like plants including Thymbra spicata L. are widely used as food and folk medicinal remedies in the Mediterranean area. This study aimed to explore the in vitro antitumor potential of polyphenol-enriched extracts from aerial parts of T. spicata. The ethanolic extract significantly inhibited proliferation of different human tumor cell lines, without significant effects on non-neoplastic cells. A deeper investigation of the molecular mechanism sustaining the in vitro antitumor activity of the extract was carried on the human breast cancer cells MCF-7 in comparison with the normal breast cells MCF-10A. The effects on MCF-7 cells were associated with the following: (i) production of reactive oxygen species (ROS) and release of nitric oxide; (ii) apoptosis induction; and (iii) reduction in STAT3 and NF-kB phosphorylation. The ethanolic extract from T. spicata leaves might represent a novel therapeutic tool in combination with conventional chemotherapy to reduce the adverse side effects and drug resistance.
Collapse
Affiliation(s)
- Mohamad Khalil
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon.,Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Hala Khalifeh
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Francesca Baldini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Nadia Serale
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Ahmad Daher
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
26
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
27
|
Baldini F, Portincasa P, Grasselli E, Damonte G, Salis A, Bonomo M, Florio M, Serale N, Voci A, Gena P, Vergani L, Calamita G. Aquaporin-9 is involved in the lipid-lowering activity of the nutraceutical silybin on hepatocytes through modulation of autophagy and lipid droplets composition. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158586. [PMID: 31816412 DOI: 10.1016/j.bbalip.2019.158586] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Hepatic steatosis is the hallmark of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome and insulin resistance with potential evolution towards non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Key roles of autophagy and oxidative stress in hepatic lipid accumulation and NAFLD progression are recognized. Here, we employed a rat hepatoma cell model of NAFLD progression made of FaO cells exposed to oleate/palmitate followed or not by TNFα treatment to investigate the molecular mechanisms through which silybin, a lipid-lowering nutraceutical, may improve hepatic lipid dyshomeostasis. The beneficial effect of silybin was found to involve amelioration of the fatty acids profile of lipid droplets, stimulation of the mitochondrial oxidation and upregulation of a microRNA of pivotal relevance in hepatic fat metabolism, miR-122. Silybin was also found to restore the levels of Aquaporin-9 (AQP9) and glycerol permeability while reducing the activation of the oxidative stress-dependent transcription factor NF-κB, and autophagy turnover. In conclusion, silybin was shown to have molecular effects on signaling pathways that were previously unknown and potentially protect the hepatocyte. These actions intersect TG metabolism, fat-induced autophagy and AQP9-mediated glycerol transport in hepatocytes.
Collapse
Affiliation(s)
| | - Piero Portincasa
- Clinica Medica "A. Murri", Dept. of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Italy
| | - Elena Grasselli
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | | | - Annalisa Salis
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | - Michela Bonomo
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy
| | - Marilina Florio
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy
| | - Nadia Serale
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | - Adriana Voci
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy
| | - Patrizia Gena
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy
| | - Laura Vergani
- DISTAV, Dept. of Earth, Environment and Life Sciences, Italy.
| | - Giuseppe Calamita
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Italy.
| |
Collapse
|