1
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Cruz JN, de Oliveira MS, Ferreira OO, Gomes ARQ, Mali SN, Pereira SFM, Ansar S, dos Santos CBR, Lima RR, de Andrade EHA. Analysis of Chemical Composition, Antioxidant Activity, and Toxicity of Essential Oil from Virola sebifera Aubl (Myristicaceae). Molecules 2024; 29:3431. [PMID: 39065009 PMCID: PMC11279522 DOI: 10.3390/molecules29143431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 07/28/2024] Open
Abstract
Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-mass spectrometry (GC/MS). The volatile components were identified by comparing their retention indices and mass spectra with standard substances documented in the literature (ADAMS). The antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%), (E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene (16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018, primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%), and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene (23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by (E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs, sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals, with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic interactions significantly contributed to the binding of the major compounds in the EO from sample B to the binding pocket of AChE.
Collapse
Affiliation(s)
- Jorddy Neves Cruz
- Adolpho Ducke Laboratory, Botany Coordination, Paraense Emílio Museum, Belém 66075-110, PA, Brazil; (M.S.d.O.)
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Oberdan Oliveira Ferreira
- Adolpho Ducke Laboratory, Botany Coordination, Paraense Emílio Museum, Belém 66075-110, PA, Brazil; (M.S.d.O.)
| | | | - Suraj N. Mali
- School of Pharmacy, D.Y. Patil University, Sector 7, Nerul, Navi Mumbai 400706, India
| | - Soluan Felipe Melo Pereira
- Adolpho Ducke Laboratory, Botany Coordination, Paraense Emílio Museum, Belém 66075-110, PA, Brazil; (M.S.d.O.)
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Cleydson Breno Rodrigues dos Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-230, AP, Brazil;
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Eloisa Helena Aguiar de Andrade
- Adolpho Ducke Laboratory, Botany Coordination, Paraense Emílio Museum, Belém 66075-110, PA, Brazil; (M.S.d.O.)
- Faculty of Chemistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
3
|
Cavalcanti BC, Magalhães IL, Rocha DD, Stefânio Barreto F, de Andrade Neto JB, Magalhães HIF, Dos Santos CC, de Moraes MO. In vitro evaluation of cytotoxic potential of essential oil extracted from leaves of Croton heliotropiifolius Kunth in human tumor cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:91-107. [PMID: 37927232 DOI: 10.1080/15287394.2023.2276894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Croton heliotropiifolius Kunth, popularly known as "velame," is a shrub that resides in northeastern Brazil. The essential oil of C. heliotropiifolius contains high concentrations of volatile compounds in the leaves and is widely used in folk medicine for many purposes as an antiseptic, analgesic, sedative, and anti-inflammatory agent. Due to the apparent limited amount of information, the aim of this study was to determine the cytotoxic potential of essential oil extracted from leaves of C. heliotropiifolius, utilizing different human cancer cell lines (HL-60, leukemia; HCT-116, colon; MDA-MB435, melanoma; SF295, glioblastoma) and comparison to murine fibroblast L929 cell line. The chemical characterization of the essential oil revealed the presence of large amounts of monoterpenes and sesquiterpenes, the majority of which were aristolene (22.43%), germacrene D (11.38%), ɣ-terpinene (10.85%), and limonene (10.21%). The essential oil exerted significant cytotoxicity on all cancer cells, with low activity on murine L929 fibroblasts, independent of disruption of cell membranes evidenced by absence of hemolytic activity. The cytotoxicity identified was associated with oxidative stress, which culminated in mitochondrial respiration dysfunction and direct or indirect DNA damage (strand breaks and oxidative damage), triggering cell death via apoptosis. Our findings suggest that extracts of essential oil of C. Heliotropiifolius may be considered as agents to be used therapeutically in treatment of certain cancers.
Collapse
Affiliation(s)
| | - Islay Lima Magalhães
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - João Batista de Andrade Neto
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, Brazil
| | | | - Cláudio Costa Dos Santos
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Department of Engineering and Technology, Federal University of the Semiarid Region, Mossoró, Brazil
| | | |
Collapse
|
4
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
5
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
6
|
In Vitro Antibacterial Activity and in Silico Analysis of the Bioactivity of Major Compounds Obtained from the Essential Oil of Virola surinamensis Warb (Myristicaceae). J FOOD QUALITY 2022. [DOI: 10.1155/2022/5275805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Essential oils are well known for their antimicrobial activity and they are used as an effective food preservative. Virola is one of the five genera of Myristicaceae and this genus is native to the American continent, especially in neotropical regions. The largest number of species of this genus is found in the Amazon region and the most important species include Virola surinamensis Warb. and Virola sebifera Aubl. In the present study, we describe the chemical composition of the essential oil of the V. surinamensis obtained at two different periods of the day in two seasons (rainy and dry), as well as their antimicrobial activity against pathogenic bacterial strains of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. In addition, we investigated, using in silico tools, the antimicrobial activity of the major chemical compounds present in the essential oil of V. surinamensis. The samples collected at different seasons and times showed a similar chemical profile, characterized by the major constituents α-pinene (>33%) and β-pinene (>13%). The essential oil of V. surinamensis showed an interesting antibacterial activity, exhibiting low inhibitory concentrations against the tested bacterial species. The computational investigation indicated that limonene, myrcene, and β-pinene could be related to the antibacterial activity against the tested pathogenic bacterial strains. Our results shed light on the possible constituents of essential oil that could be related to its activity against bacterial species and might be useful for further experimental tests that aim to discover new potential antibacterial agents for food preservation.
Collapse
|
7
|
Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144373. [PMID: 35889245 PMCID: PMC9318482 DOI: 10.3390/molecules27144373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications. Over the years in the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The literature has shown that essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action. In light of this vital importance, this study aimed at performing a review of the literature with particular emphasis on the chemical composition and biological activities in studies conducted with species collected in the Amazon, taking into consideration in particular the last 10 years of collection and research.
Collapse
|
8
|
de Oliveira FP, da C Rodrigues ACB, de Lima EJSP, Silva VR, de S Santos L, da Anunciação TA, Nogueira ML, Soares MBP, Dias RB, Gurgel Rocha CA, Duvoisin Junior S, Albuquerque PM, Lima ES, Gonçalves JFC, Bataglion GA, Costa EV, da Silva FMA, Koolen HHF, Bezerra DP. Essential Oil from Bark of Aniba parviflora (Meisn.) Mez (Lauraceae) Reduces HepG2 Cell Proliferation and Inhibits Tumor Development in a Xenograft Model. Chem Biodivers 2021; 18:e2000938. [PMID: 33508178 DOI: 10.1002/cbdv.202000938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
Aniba parviflora (Meisn.) Mez (Lauraceae) is an aromatic plant of the Amazon rainforest, which has a tremendous commercial value in the perfumery industry; it is popularly used as flavoring sachets and aromatic baths. In Brazilian folk medicine, A. parviflora is used to treat victims of snakebites. Herein, we analyzed the chemical composition of A. parviflora bark essential oil (EO) and its effect on the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. EO was obtained by hydrodistillation and characterized by GC-MS and GC-FID. The main constituents of EO were linalool (16.3±3.15), α-humulene (14.5±2.41 %), δ-cadinene (10.2±1.09 %), α-copaene (9.51±1.12 %) and germacrene B (7.58±2.15 %). Initially, EO's cytotoxic effect was evaluated against five cancer cell lines (HepG2, MCF-7, HCT116, HL-60 and B16-F10) and one non-cancerous one (MRC-5), using the Alamar blue method after 72 h of treatment. The calculated IC50 values were 9.05, 22.04, >50, 15.36, 17.57, and 30.46 μg/mL, respectively. The best selectivity was for HepG2 cells with a selective index of 3.4. DNA Fragmentation and cell cycle distribution were quantified in HepG2 cells by flow cytometry after a treatment period of 24 and 48 h. The effect of EO on tumor development in vivo was evaluated in a xenograft model using C.B-17 SCID mice engrafted with HepG2 cells. In vivo tumor growth inhibition of HepG2 xenograft at the doses of 40 and 80 mg/kg were 12.1 and 62.4 %, respectively.
Collapse
Affiliation(s)
- Felipe P de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | | | - Emilly J S P de Lima
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), 690065-130, Manaus, Amazonas, Brazil or
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Talita A da Anunciação
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Mateus L Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or.,School of Medicine and School of Dentistry, Federal University of Bahia, 40301-155, Salvador, Bahia, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or.,School of Medicine and School of Dentistry, Federal University of Bahia, 40301-155, Salvador, Bahia, Brazil
| | - Sérgio Duvoisin Junior
- Laboratory of Applied Chemistry and Technology, Amazonas State University (UEA), 69050-020, Manaus, Amazonas, Brazil
| | - Patrícia M Albuquerque
- Laboratory of Applied Chemistry and Technology, Amazonas State University (UEA), 69050-020, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Faculty of Pharmacy, Federal University of Amazonas (UFAM), 69077-000, Manaus, Amazonas, Brazil
| | - José F C Gonçalves
- Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (INPA), 69011-970, Manaus, Amazonas, Brazil
| | - Giovana A Bataglion
- Department of Chemistry, Federal University of Amazonas (UFAM), 69080-900, Manaus, Amazonas, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), 69080-900, Manaus, Amazonas, Brazil
| | - Felipe M A da Silva
- Analytical Center, Multidisciplinary Support Center (CAM), Federal University of Amazonas (UFAM), 69080-900, Manaus, Amazonas, Brazil
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), 690065-130, Manaus, Amazonas, Brazil or
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710, Salvador, Bahia, Brazil or
| |
Collapse
|