1
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Balkrishna A, Sharma Y, Dabas S, Arya V, Dabas A. Molecular Mechanism of Cynodon dactylon Phytosterols Targeting MAPK3 and PARP1 to Combat Epithelial Ovarian Cancer: A Multifaceted Computational Approach. Cell Biochem Biophys 2024; 82:2625-2650. [PMID: 38961033 DOI: 10.1007/s12013-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Epithelial Ovarian Cancer (EOC) presents a global health concern, necessitating the development of innovative therapeutic strategies to combat its impact. This study was employed to investigate the unexplored therapeutic efficacy of Cynodon dactylon phytochemicals against EOC using a multifaceted computational approach. A total of 19 out of 89 rigorously curated phytochemicals were assessed as potential drug targets via ADMET profiling, while protein-protein interaction analysis scrutinized the top 20 hub genes among 264 disease targets, revealing their involvement in cancer-related pathways and underscoring their significance in EOC pathogenesis. In molecular docking, Stigmasterol acetate showed the highest binding affinity (-10.9 kcal/mol) with Poly [ADP-ribose] polymerase-1 (PDB: 1UK1), while Arundoin and Beta-Sitosterol exhibited strong affinities (-10.4 kcal/mol and -10.1 kcal/mol, respectively); additionally, Beta-Sitosterol interacting with Mitogen-activated protein kinase 3 (PDB: 4QTB) showed a binding affinity of -10.1 kcal/mol, forming 2 hydrogen bonds and a total of 10 bonds with 10 residues. Molecular dynamics simulations exhibited the significant structural stability of the Beta-Sitosterol-4QTB complex with superior binding free energy (-36.61 kcal/mol) among the three complexes. This study identified C. dactylon phytosterols, particularly Beta-Sitosterol, as effective in targeting MAPK3 and PARP1 to combat EOC, laying the groundwork for further experimental validation and drug development efforts.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Yoganshi Sharma
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Shakshi Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Anurag Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India.
| |
Collapse
|
3
|
Zhang LL, Sheng F, Yang Y, Hu YF, Li W, Huang GY, Wu MY, Gong Y, Zhang P, Zou L. Integrative transcriptomics and proteomics analyses to reveal the therapeutic effect and mechanism of Buxue Yimu Pills in medical-induced incomplete abortion rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116113. [PMID: 36581165 DOI: 10.1016/j.jep.2022.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medical abortions using mifepristone and misoprostol have been approved in many countries for early pregnancy loss. Despite its high success rate, this medication regimen can result in incomplete abortion, which is responsible for endometrial damage, prolonged uterine bleeding, abdominal pain, etc. Buxue Yimu Pills (BYP) is a famous Chinese medicine prescription that is widely used in the field of gynecology and obstetrics for treating patients with postpartum complications. However, the therapeutic effect and mechanism of BYP remain to be explored. AIM OF THE STUDY This study aimed to clarify the therapeutic effect and mechanism of action of BYP in postpartum complications using mifepristone and misoprostol-induced incomplete abortion in rats. MATERIALS AND METHODS Experimental medical-induced incomplete abortion model rats were constructed using mifepristone and misoprostol, and further treated with saline or BYP by intragastric administration. Detailed information regarding the changes in mRNA and protein levels in the uterine tissues of rats regulated by BYP was illustrated by RNA sequencing (RNA-seq) analysis and quantitative proteomics analysis. The differentially expressed genes and proteins were further subjected to Gene Ontology (GO) and pathway enrichment analyses and further verified using quantitative Real-time PCR (qRT-PCR) analysis and western blot assay. RESULTS BYP administration markedly alleviated the increase in serum prostaglandin F2α (PGF2α) and expression of PGF2α receptor (PGF2αR) in uterine tissues and inhibited the decrease in serum chorionic gonadotrophin (CG). Compared with the model group, 674 genes were upregulated and 344 genes were downregulated by BYP administration; 108 proteins were upregulated and 48 proteins were downregulated by BYP administration. qRT-PCR analysis of the uterine tissues showed that BYP treatment reversed the variation tendency of genes, including Mmp7, Mmp14, Timp2, Col6a4, Jak2, Wnt7a, and Mylk compared with the model group. Western blot analysis showed that BYP administration affected PKCδ, Collagen VI, MMP7, TIMP2, MLCK, and p-MLC protein levels. CONCLUSION BYP administration facilitated uterine recovery in medical-induced incomplete abortion rats, and this therapeutic effect involved various targets and biological processes, including the TIMP2/MMP7 and MLCK/p-MLC signaling pathways, etc.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yong Yang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Guo-Ying Huang
- Department of Pharmacy, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Meng-Yao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yun Gong
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Peng Zhang
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China.
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China.
| |
Collapse
|
4
|
Li SY, Wang WJ, Li QY, Yang PH, Li XL, Yan Y, Yuan Y, Feng YB, Hong M. Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Front Pharmacol 2022; 13:884822. [PMID: 36210831 PMCID: PMC9538923 DOI: 10.3389/fphar.2022.884822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese herbal medicines offer a rich source of anti-cancer drugs. Differences between the pharmacology of Chinese herbal medicines and modern synthetic chemicals hinder the development of drugs derived from herbal products. To address this challenge, novel omics approaches including transcriptomics, proteomics, genomics, metabolomics, and microbiomics have been applied to dissect the pharmacological benefits of Chinese herbal medicines in cancer treatments. Numerous Chinese herbal medicines have shown potential anti-tumor effects on different gastrointestinal (GI) cancers while eliminating the side effects associated with conventional cancer therapies. The present study aimed to provide an overview of recent research focusing on Chinese herbal medicines in GI cancer treatment, based on omics approaches. This review also illustrates the potential utility of omics approaches in herbal-derived drug discovery. Omics approaches can precisely and efficiently reveal the key molecular targets and intracellular interaction networks of Chinese herbal medicines in GI cancer treatment. This study summarizes the application of different omics-based approaches in investigating the effects and mechanisms of Chinese herbal medicines in GI cancers. Future research directions are also proposed for this area of study.
Collapse
Affiliation(s)
- Si-Yi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangzhou, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Wei-Jia Wang
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Qiu-Yue Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Hui Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Long Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Yuan
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Yi-Bin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Yi-Bin Feng, ; Ming Hong,
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
- *Correspondence: Yi-Bin Feng, ; Ming Hong,
| |
Collapse
|
5
|
TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7805115. [PMID: 35450411 PMCID: PMC9017576 DOI: 10.1155/2022/7805115] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) was originally named vitamin D3 upregulated protein-1 (VDUP1) because of its ability to bind to thioredoxin (TRX) and inhibit TRX function and expression. TXNIP is an alpha-arrestin protein that is essential for redox homeostasis in the human body. TXNIP may act as a double-edged sword in the cell. The balance of TXNIP is crucial. A study has shown that TXNIP can travel between diverse intracellular locations and bind to different proteins to play different roles under oxidative stress. The primary function of TXNIP is to induce apoptosis or pyroptosis under oxidative stress. TXNIP also inhibits proliferation and migration in cancer cells, although TXNIP levels decrease, and function diminishes in various cancers. In this review, we summarized the main structure, binding proteins, pathways, and the role of TXNIP in diseases, aiming to explore the double-edged sword role of TXNIP, and expect it to be helpful for future treatment using TXNIP as a therapeutic target.
Collapse
|