1
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
2
|
Zhan T, Zou Y, Han Z, Tian X, Chen M, Liu J, Yang X, Zhu Q, Liu M, Chen W, Chen M, Huang X, Tan J, Liu W, Tian X. Single-cell sequencing combined with spatial transcriptomics reveals that the IRF7 gene in M1 macrophages inhibits the occurrence of pancreatic cancer by regulating lipid metabolism-related mechanisms. Clin Transl Med 2024; 14:e1799. [PMID: 39118300 PMCID: PMC11310283 DOI: 10.1002/ctm2.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
AIM The main focus of this study is to explore the molecular mechanism of IRF7 regulation on RPS18 transcription in M1-type macrophages in pancreatic adenocarcinoma (PAAD) tissue, as well as the transfer of RPS18 by IRF7 via exosomes to PAAD cells and the regulation of ILF3 expression. METHODS By utilising single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data from the Gene Expression Omnibus database, we identified distinct cell types with significant expression differences in PAAD tissue. Among these cell types, we identified those closely associated with lipid metabolism. The differentially expressed genes within these cell types were analysed, and target genes relevant to prognosis were identified. Flow cytometry was employed to assess the expression levels of target genes in M1 and M2 macrophages. Cell lines with target gene knockout were constructed using CRISPR/Cas9 editing technology, and cell lines with target gene knockdown and overexpression were established using lentiviral vectors. Additionally, a co-culture model of exosomes derived from M1 macrophages with PAAD cells was developed. The impact of M1 macrophage-derived exosomes on the lipid metabolism of PAAD cells in the model was evaluated through metabolomics analysis. The effects of M1 macrophage-derived exosomes on the viability, proliferation, division, migration and apoptosis of PAAD cells were assessed using MTT assay, flow cytometry, EdU assay, wound healing assay, Transwell assay and TUNEL staining. Furthermore, a mouse PAAD orthotopic implantation model was established, and bioluminescence imaging was utilised to assess the influence of M1 macrophage-derived exosomes on the intratumoural formation capacity of PAAD cells, as well as measuring tumour weight and volume. The expression of proliferation-associated proteins in tumour tissues was examined using immunohistochemistry. RESULTS Through combined analysis of scRNA-seq and ST technologies, we discovered a close association between M1 macrophages in PAAD samples and lipid metabolism signals, as well as a negative correlation between M1 macrophages and cancer cells. The construction of a prognostic risk score model identified RPS18 and IRF7 as two prognostically relevant genes in M1 macrophages, exhibiting negative and positive correlations, respectively. Mechanistically, it was found that IRF7 in M1 macrophages can inhibit the transcription of RPS18, reducing the transfer of RPS18 to PAAD cells via exosomes, consequently affecting the expression of ILF3 in PAAD cells. IRF7/RPS18 in M1 macrophages can also suppress lipid metabolism, cell viability, proliferation, migration, invasion and intratumoural formation capacity of PAAD cells, while promoting cell apoptosis. CONCLUSION Overexpression of IRF7 in M1 macrophages may inhibit RPS18 transcription, reduce the transfer of RPS18 from M1 macrophage-derived exosomes to PAAD cells, thereby suppressing ILF3 expression in PAAD cells, inhibiting the lipid metabolism pathway, and curtailing the viability, proliferation, migration, invasion of PAAD cells, as well as enhancing cell apoptosis, ultimately inhibiting tumour formation in PAAD cells in vivo. Targeting IRF7/RPS18 in M1 macrophages could represent a promising immunotherapeutic approach for PAAD in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Yanli Zou
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Zheng Han
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - XiaoRong Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Mengge Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiaxi Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiulin Yang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingxi Zhu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Meng Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Wei Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Mingtao Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xiaodong Huang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jie Tan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Weijie Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xia Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| |
Collapse
|
3
|
Dai S, Gu Y, Zhan Y, Zhang J, Xie L, Li Y, Lu Y, Yang R, Zhou E, Chen D, Liu S, Zheng S, Shi Z, Dong K, Dong R. The potential mechanism of Aidi injection against neuroblastoma-an investigation based on network pharmacology analysis. Front Pharmacol 2024; 15:1310009. [PMID: 38313313 PMCID: PMC10834740 DOI: 10.3389/fphar.2024.1310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Aidi injection, a classic traditional Chinese medicine (TCM) formula, has been used on a broader scale in treating a variety of cancers. In this study, we aimed to explore the potential anti-tumor effects of Aidi injection in the treatment of neuroblastoma (NB) using network pharmacology (NP). Methods: To elucidate the anti-NB mechanism of Aidi injection, an NP-based approach and molecular docking validation were employed. The compounds and target genes were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM) database. The protein-protein interaction network was constructed using the STRING database. clusterProfiler (R package) was utilized to annotate the bioinformatics of hub target genes. The gene survival analysis was performed on R2, a web-based genomic analysis application. iGEMDOCK was used for molecular docking validation, and GROMACS was utilized to validate molecular docking results. Furthermore, we investigated the anticancer effects of gomisin B and ginsenoside Rh2 on human NB cells using a cell viability assay. The Western blot assay was used to validate the protein levels of target genes in gomisin B- and ginsenoside Rh2-treated NB cells. Results: A total of 2 critical compounds with 16 hub target genes were identified for treating NB. All 16 hub genes could potentially influence the survival of NB patients. The top three genes (EGFR, ESR1, and MAPK1) were considered the central hub genes from the drug-compound-hub target gene-pathway network. The endocrine resistance and estrogen signaling pathways were identified as the therapeutic pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gomisin B and ginsenoside Rh2 showed a good binding ability to the target protein in molecular docking. The results of cell experiments showed the anti-NB effect of gomisin B and ginsenoside Rh2. In addition, the administration of gomisin B over-regulated the expression of ESR1 protein in MYCN-amplified NB cells. Conclusion: In the present study, we investigated the potential pharmacological mechanisms of Aidi against NB and revealed the anti-NB effect of gomisin B, providing clinical evidence of Aidi in treating NB and establishing baselines for further research.
Collapse
Affiliation(s)
- Shuyang Dai
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yaoyao Gu
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Zhan
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Lulu Xie
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Li
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Yifei Lu
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Ran Yang
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Enqing Zhou
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Deqian Chen
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Songbin Liu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shan Zheng
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhaopeng Shi
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, School of Medicine, Basic Medical Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Kuiran Dong
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| | - Rui Dong
- Shanghai Key Laboratory of Birth Defect, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Chen YR, Zhao RT, Xu YF, Ma YJ, Hu SB, Wang XH, Fan BB, Zhou YJ, Huang YB, Robinson N, Liu JP, Liu ZL. Chinese herbal injections in combination with radiotherapy for advanced pancreatic cancer: A systematic review and network meta-analysis. Integr Med Res 2023; 12:101004. [PMID: 38033651 PMCID: PMC10681939 DOI: 10.1016/j.imr.2023.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Background Advanced pancreatic cancer (APC) is a fatal disease with limited treatment options. This study aims to evaluate the effectiveness and safety of different Chinese herbal injections (CHIs) as adjuvants for radiotherapy (RT) in APC and compare their treatment potentials using network meta-analysis. Methods We systematically searched three English and four Chinese databases for randomized controlled trials (RCTs) from inception to July 25, 2023. The primary outcome was the objective response rate (ORR). Secondary outcomes included Karnofsky performance status (KPS) score, overall survival (OS), and adverse events (AEs). The treatment potentials of different CHIs were ranked using the surface under the cumulative ranking curve (SUCRA). The Cochrane RoB 2 tool and CINeMA were used for quality assessment and evidence grading. Results Eighteen RCTs involving 1199 patients were included. Five CHIs were evaluated. Compound Kushen injection (CKI) combined with RT significantly improved ORR compared to RT alone (RR 1.49, 95 % CrI 1.21-1.86). Kanglaite (KLT) plus RT (RR 1.58, 95 % CrI 1.20-2.16) and CKI plus RT (RR 1.49, 95 % CrI 1.16-1.95) were associated with improved KPS score compared to radiation monotherapy, with KLT+RT being the highest rank (SUCRA 72.28 %). Regarding AEs, CKI plus RT was the most favorable in reducing the incidence of leukopenia (SUCRA 90.37 %) and nausea/vomiting (SUCRA 85.79 %). Conclusions CKI may be the optimal choice of CHIs to combine with RT for APC as it may improve clinical response, quality of life, and reduce AEs. High-quality trials are necessary to establish a robust body of evidence. Protocol registration PROSPERO, CRD42023396828.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruo-Tong Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Fang Xu
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yin-Jie Ma
- Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Shao-Bo Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Xue-Hui Wang
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing-Bing Fan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Ji Zhou
- Health Management Department, Aerospace Center Hospital, Beijing, China
| | - Yu-Bei Huang
- Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Nicola Robinson
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Health and Social Care, London South Bank University, London, UK
| | - Jian-Ping Liu
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao-Lan Liu
- Centre for Evidence-based Chinese Medicine, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Tarasiuk A, Mirocha G, Fichna J. Current status of Complementary and Alternative Medicine Interventions in the Management of Pancreatic Cancer - An Overview. Curr Treat Options Oncol 2023; 24:1852-1869. [PMID: 38079061 PMCID: PMC10781793 DOI: 10.1007/s11864-023-01146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 01/11/2024]
Abstract
OPINION STATEMENT Pancreatic cancer (PC) remains the deadliest cancer worldwide. Most patients are diagnosed at the advanced or metastatic stage, leading to a poor prognosis. Awareness of the limitations of current therapy and accompanying pain, depression, malnutrition, and side effects of chemoradiotherapy may lead patients and physicians towards complementary and alternative medicine (CAM). CAM refers to a diverse set of medical and healthcare practices, products, and systems that are not part of conventional Western medicine. Despite the low-quality evidence supporting the efficacy of these methods, they remain appealing due to patients' beliefs, fear of death, and the slow development of conventional therapy. Hence, the possibility of using natural products for pancreatic cancer is increasing. CAM options such as: medical cannabis, plants, fungi, herbal formulas, and injections, which originate primarily from traditional Chinese or Japanese medicine i.e. Curcuma longa, Panax ginseng, Poria cocos, Hochuekkito, Juzentaihoto, and Rikkunshito, Shi-quan-da-bu-tang/TJ-48, Huang-qin-tang, Shuangbai San, Wen Jing Zhi Tong Fang, Xiang-Sha-Liu-jun-zi-tang, Aidi injection, Brucea javanica oil emulsion/Yadanziyouru injection, Compound Kushen injection, Huachansu injection, Kangai injection and Kanglaite injections are becoming promising candidates for the management of pancreatic cancer. The abovementioned substances/medications are the most popular or potentially effective in PC treatment and consequently CAM-based adjuvant therapy through improving patients' quality of life, might be a useful addition in the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| | - Grzegorz Mirocha
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| |
Collapse
|
6
|
Yan J, Deng XL, Ma SQ, Hui Li Y, Gao YM, Shi GT, Wang HS. Cantharidin suppresses hepatocellular carcinoma development by regulating EZH2/H3K27me3-dependent cell cycle progression and antitumour immune response. BMC Complement Med Ther 2023; 23:160. [PMID: 37202806 DOI: 10.1186/s12906-023-03975-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Cantharidin (CTD) is a major ingredient of cantharis (Mylabris phalerata Pallas) and has been used extensively in traditional Chinese medicines. It has been shown to exhibit anticancer activity in multiple types of cancer, especially hepatocellular carcinoma (HCC). However, there is no systematic study on the relationships among the regulatory networks of its targets in HCC therapy. We focused on histone epigenetic regulation and the influence of CTD on the immune response in HCC. METHODS We performed a comprehensive analysis of novel CTD targets in HCC based on network pharmacology and RNA-seq approaches. The mRNA levels of target genes were analyzed by qRT-PCR, and the corresponding protein levels were confirmed using enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining (IHC). ChIP-seq data were visualized by IGV software. The associations of gene transcript levels with the cancer immune score and infiltration level were investigated using TIMER. In vivo, the H22 mouse model of hepatocellular carcinoma was established by treatment with CTD and 5-Fu. The immune cell proportions in the blood were elevated in model mice, as shown by flow cytometry. RESULTS We identified 58 targets of CTD, which were involved in various pathways in cancer, including apoptosis, the cell cycle, EMT and immune pathways. Moreover, we found that 100 EMT-related genes were differentially expressed after CTD treatment in HCC cells. Interestingly, our results confirmed that the EZH2/H3K27me3 -related cell cycle pathway is a therapeutic target of CTD in antitumour. In addition, we evaluated the influence of CTD on the immune response. Our data showed that the significantly enriched gene sets were positively correlated with the chemokine biosynthetic and chemokine metabolic modules. The proportions of CD4+/CD8 + T cells and B cells were increased, but the proportion of Tregs was decreased after treatment with CTD in vivo. Moreover, we found that the expression of the inflammatory factor and immune checkpoint genes PD-1/PD-L1 was significantly reduced in the mouse model. CONCLUSION We performed a novel integrated analysis of the potential role of CTD in HCC treatment. Our results provide innovative insight into the mechanism by which cantharidin exerts antitumour effects by regulating target genes expression to mediate apoptosis, EMT, cell cycle progression and the immune response in HCC. Based on the effect of CTD on the immune response, it can be used as a potential effective drug to activate antitumour immunity for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jia Yan
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiu Ling Deng
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shi Qi Ma
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Yu Hui Li
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yu Min Gao
- School of Public health, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Gui Tao Shi
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Hai Sheng Wang
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
7
|
Wang J, Wang Q, Zhang P, Zhang R, He J. Efficacy and safety of traditional Chinese medicine for the treatment of pancreatic cancer: An overview of systematic reviews and meta-analyses. Front Pharmacol 2022; 13:896017. [PMID: 36120323 PMCID: PMC9475193 DOI: 10.3389/fphar.2022.896017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/02/2022] [Indexed: 12/09/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumor with poor prognosis. Currently available Western medical management strategies are unable to prolong the survival time and reduce the mortality of patients with pancreatic cancer. Traditional Chinese medicine has achieved promising results in many clinical studies. This systematic review and meta-analysis (SR/MA) aimed to explore the benefits and evaluate the quality of evidence of traditional Chinese medicine-based interventions for preventing and treating pancreatic cancer. A systematic search of eight databases for SRs/MAs of randomized controlled trials on traditional Chinese medicine treatment for pancreatic cancer was conducted (from inception to April 2022). The methodological quality of the SRs/MAs was assessed using AMSTAR 2.0, and the quality of evidence was evaluated using the GRADE guide. Nine SRs/MAs, including 145 randomized controlled trials, were considered eligible for this study. The literature were published between 2014 and 2022. The sample size of randomized controlled trials in the MAs ranged from 336 to 1,989. The methodological quality of the nine studies was critically low. Among the 59 outcome indicators of the nine SRs/MAs, seven, 33, and 19 had moderate-, low-, and critically low-quality evidence, respectively, while high-quality evidence was not identified. The results for the long-term indicators, short-term indicators, and adverse reactions in the SRs/MAs displayed consistencies and differences. In conclusion, the methodological and evidence quality of the current evidence is generally low, highlighting the need for additional focus on implementation processes. Some evidence with moderate quality validated that several specific traditional Chinese medicine were optimum for improving the short-term clinical efficacy. However, more objective and high-quality investigations are warranted to verify the efficacy of traditional Chinese medicine for pancreatic cancer.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyuan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| | - Peitong Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Peitong Zhang,
| | - Ruoqi Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jie He
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|