1
|
Barman A, Barman M, Ray S. Maesa lanceolata: a comprehensive review of its traditional medicinal uses, phytochemistry, pharmacological potential, toxicology, and safety profile. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04044-8. [PMID: 40116874 DOI: 10.1007/s00210-025-04044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
Maesa lanceolata Forssk. (Primulaceae) is a well-known medicinal plant in Rwanda and it is used to treat conditions such as malaria, asthma, elephantiasis, wounds, backache, stomachache, menorrhagia, sexually transmitted diseases (syphilis and gonorrhea), etc. in many African countries. This study aims to combine all the available information on the botanical characteristics, distribution, phytochemistry, pharmacological activity, and toxicology of M. lanceolata. Data collection was done using multiple electronic search engines like Scopus, Science Direct, PubMed, ResearchGate, and Google Scholar. Significant medicinal properties such as antioxidant, antibacterial, cytotoxic, antiviral, antifungal, antiplasmodial, molluscicidal, and antiulcerogenic properties have been found in a variety of studies that align with its various ethnomedicinal applications. Phytochemical studies have identified nearly 70 compounds from different parts of the plant, including triterpenoid saponins, benzoquinones, steroids, terpenoids, and other components. Benzoquinones, specifically maesanin, dihydromaesanin, and isomeric mixtures, exhibited significant cytotoxicity against the HL-60 cell line. Furthermore, structurally related acylated benzoquinones with shorter alkyl substituents [(2- acetoxy-5-hydoxy-6-methyl-3-tridecyl-1,4-benzoquinone and 2-hydoxy-5-acetoxy-6-methyl-3-tridecyl-1,4- benzoquinone)] display both antioxidant and antiproliferative effects on the SK-MEL, KB, BT-549 and SK-OV-3 cancer cell lines. The compound maesasaponin II demonstrated promising antiangiogenic activity without concurrent hemolytic effect. Additionally, maesanin showed inhibitory activity against 5-lipoxygenase, suggesting potential anti-inflammatory applications. These findings indicate the potential of M. lanceolata in various biological applications and show the necessity of further studies to explore its potential therapeutic benefits in numerous public health issues. Human clinical trials and studies on the mechanisms of action are needed to determine if any compounds in the plant can be used as leads in drug development.
Collapse
Affiliation(s)
- Anuva Barman
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
- Department of Zoology, Sonamukhi College, Bankura, 722207, West Bengal, India
| | - Manabendu Barman
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Sanjib Ray
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India.
| |
Collapse
|
2
|
Abbas Z, Mustafa S, Khan MF, Khan MA, Massey S, Dev K, Khan A, Parveen S, Husain SA. Therapeutic importance of Kigelia africana subsp. africana: an alternative medicine. Nat Prod Res 2024; 38:4208-4222. [PMID: 37921076 DOI: 10.1080/14786419.2023.2273914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
AIM To summarise a detailed up-to-date review of the traditional uses, phytoconstituents, and pharmacological activities of various parts of Kigelia africana. MATERIALS AND METHODS Google Scholar, PubMed, PubChem, Elsevier, King Draw, indianbiodiversity.org. RESULT The phytochemical analysis of Kigelia africana subsp. africana has revealed the presence of approximately 145 compounds extracted from different parts of the plant. These bioactive extracts of the plant possess anti-inflammatory, antioxidant, antimicrobial, antidiabetic, antineoplastic, and anti-urolithic activities. Due to its anti-inflammatory, antioxidant, and immune-booster properties, Kigelia can prove to be an essential source of drugs for treating various disorders. CONCLUSION Knowledge of the phytoconstituents, non-medicinal and medicinal traditional uses, pharmacological activities, and products obtained from Kigelia is described in this review with the hope that the updated findings will promote research on its biological pathways.
Collapse
Affiliation(s)
- Zahra Abbas
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Saad Mustafa
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
- Deen Dayal Upadhyay Kaushal Kendra, Jamia Millia Islamia, New Delhi, India
| | - Mohd Faisal Khan
- Department of Biotechnology, Medical Biotechnology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Aasif Khan
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Sheersh Massey
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Medical Biotechnology Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Asifa Khan
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Shabana Parveen
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Kim HJ, Jin BR, Lee CD, Kim D, Lee AY, Lee S, An HJ. Anti-Inflammatory Effect of Chestnut Honey and Cabbage Mixtures Alleviates Gastric Mucosal Damage. Nutrients 2024; 16:389. [PMID: 38337674 PMCID: PMC10857084 DOI: 10.3390/nu16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Gastritis, one of the most common gastrointestinal disorders, damages the stomach lining as it causes a disproportion between the protective and ruinous factors of the gastric system. Cabbage (CB) is widely used to treat gastric lesions but requires the addition of natural sweeteners to counteract its distinct bitter taste. Therefore, this study sought to determine whether the combination of chestnut honey (CH)-which is known for its dark brown color and high kynurenic acid (KA) content-or KA-increased CH (KACH) with CB (CH + CB or KACH + CB) exerts synergistic effects for improving both taste and efficacy. Before confirming the gastroprotective effects in indomethacin (INDO)-induced rats, the anti-inflammatory activities of CH + CB and KACH + CB were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. As a result, treatment with either CH + CB or KACH + CB downregulated pro-inflammatory cytokine levels in LPS-stimulated RAW 264.7 macrophages by regulating the translocation of nuclear factor kappa B. Furthermore, both CH + CB and KACH + CB not only enhanced the levels of antioxidant enzymes but also triggered the activation of nuclear factor erythroid-related factor 2. Based on these effects, CH + CB or KACH + CB effectively protected the gastric mucosa in INDO-induced rats. Therefore, this study suggests that CH + CB and KACH + CB exert stronger gastroprotective effects when used together.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
| | - Chang-Dae Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Doyun Kim
- KEDEM Inc., Chuncheon-si 24341, Republic of Korea;
| | - Ah Young Lee
- Department of Food Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Chaniad P, Phuwajaroanpong A, Plirat W, Konyanee A, Septama AW, Punsawad C. Assessment of antimalarial activity of crude extract of Chan-Ta-Lee-La and Pra-Sa-Chan-Dang formulations and their plant ingredients for new drug candidates of malaria treatment: In vitro and in vivo experiments. PLoS One 2024; 19:e0296756. [PMID: 38206944 PMCID: PMC10783769 DOI: 10.1371/journal.pone.0296756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
5
|
Gwanya H, Cawe S, Egbichi I, Gxaba N, Mbuyiswa AA, Zonyane S, Mbolekwa B, Manganyi MC. Bowiea volubilis: From "Climbing Onion" to Therapeutic Treasure-Exploring Human Health Applications. Life (Basel) 2023; 13:2081. [PMID: 37895462 PMCID: PMC10608581 DOI: 10.3390/life13102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bowiea volubilis subsp. volubilis is primarily used to address human respiratory infections, coughs, and colds due to its diverse pharmaceutical properties. Notably, the plant contains alkaloids that exhibit notable antifungal, antibacterial, and cytotoxic properties. Additionally, the presence of saponins, with recognized antioxidant and anticancer attributes, further contributes to its medicinal potential. Steroid compounds inherent to the plant have been associated with anti-inflammatory and anticancer activities. Moreover, the bulb of B. volubilis has been associated as a source of various cardiac glycosides. Despite these therapeutic prospects, B. volubilis remains inedible due to the presence of naturally occurring toxic substances that pose risks to both animals and humans. The review focuses on a comprehensive exploration concerning B. volubilis ethnobotanical applications, phytochemical properties, and diverse biological activities in relation to in vitro and in vivo applications for promoting human health and disease prevention. The aim of the study is to comprehensively investigate the phytochemical composition, bioactive compounds, and potential medicinal properties of Bowiea volubilis, with the ultimate goal of uncovering its therapeutic applications for human health. This review also highlights an evident gap in research, i.e., insufficient evidence-based research on toxicity data. This void in knowledge presents a promising avenue for future investigations, opening doors to expanded inquiries into the properties and potential applications of B. volubilis in the context of human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Madira C. Manganyi
- Department of Biological and Environmental Sciences, Botany Section, Walter Sisulu University, Nelson Mandela Drive, Mthatha Campus, Mthatha 5117, South Africa; (H.G.); (S.C.); (I.E.); (N.G.); (A.-A.M.); (S.Z.); (B.M.)
| |
Collapse
|
6
|
Evbuomwan IO, Stephen Adeyemi O, Oluba OM. Indigenous medicinal plants used in folk medicine for malaria treatment in Kwara State, Nigeria: an ethnobotanical study. BMC Complement Med Ther 2023; 23:324. [PMID: 37716985 PMCID: PMC10504731 DOI: 10.1186/s12906-023-04131-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Folk medicine is crucial to healthcare delivery in the underdeveloped countries. It is frequently used as a primary treatment option or as a complementary therapy for malaria. Malaria is a deadly disease which greatly threatens global public health, claiming incredible number of lives yearly. The study was aimed at documenting the medicinal plants used for malaria treatment in folk medicine in Kwara State, Nigeria. METHODS Ethnobotanical information was collected from selected consenting registered traditional medicine practitioners (TMPs) through oral face-to-face interviews using in-depth, semi-structured interview guide. The ethnobotanical data were analysed, and descriptive statistical methods were used to compile them. RESULTS Sixty-two indigenous medicinal plants, including 13 new plants, used for malaria treatment were identified in this study. The TMPs preferred decoction in aqueous solvent (34%) and steeping in decaffeinated soft drink (19%) for herbal preparations. Oral administration (74%) was the main route of administration, while leaves (40%) and stem barks (32%) were the most dominant plant parts used in herbal preparations. The most cited families were Fabaceae (15%) and Rutaceae (6%), while Mangifera indica (77.14%), Enantia chlorantha (65.71%), Alstonia boonei (57.14%) followed by Cymbopogon citratus (54.29%) were the most used plants. Besides, the antimalarial activities of many of the plants recorded and their isolated phytocompounds have been demonstrated. Furthermore, the conservation status of 4 identified plants were Vulnerable. CONCLUSION The study showed strong ethnobotanical knowledge shared by the TMPs in the State and provides preliminary information that could be explored for the discovery of more potent antimalarial compounds.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-being, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Microbiology, Cellular Parasitology Unit, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG #03 Group - Good Health and Well-being, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.
| | - Olarewaju Michael Oluba
- SDG #03 Group - Good Health and Well-being, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
| |
Collapse
|
7
|
Mohanasundari C, Anbalagan S, Srinivasan K, Narayanan M, Saravanan M, Alharbi SA, Salmen SH, Nhung TC, Pugazhendhi A. Antibacterial activity potential of leaf extracts of Blepharis maderaspatensis and Ziziphus oenoplia against antibiotics resistant Pseudomonas strains isolated from pus specimens. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|