1
|
Sowunmi AA, Omeiza NA, Bakre A, Abdulrahim HA, Aderibigbe AO. Dissecting the antidepressant effect of troxerutin: modulation of neuroinflammatory and oxidative stress biomarkers in lipopolysaccharide-treated mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9965-9979. [PMID: 38951153 DOI: 10.1007/s00210-024-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
The role of neuroinflammation in the pathogenesis of depression has prompted the search for new antidepressants. Troxerutin, a bioflavonoid with anti-inflammatory and antioxidant properties, has shown promise, but its impact on neurobehavioral functions remains poorly understood. This study aimed to investigate the antidepressant potential of troxerutin and its effect on the neuroinflammatory response. Here, we exposed male Swiss mice (n = 5/group) to various treatments, including naive and negative controls receiving distilled water, troxerutin-treated groups administered at different doses (10, 20, 40 mg/kg, i.p.), and an imipramine-treated group (25 mg/kg, i.p.). After seven days of treatment, with the exception of the naive group, mice were administered a single dose of lipopolysaccharide (LPS, 0.83 mg/kg). Behavioral evaluations, consisting of the novelty-suppressed feeding (NSF) test, forced swim test (FST), and open field test (OFT), were conducted. Additionally, brain samples were collected for biochemical and immunohistochemical analyses. Troxerutin significantly reduced immobility time in the FST and mitigated behavioral deficits in the NSF test. Additionally, troxerutin increased glutathione (GSH) and superoxide dismutase (SOD) levels while reducing nitrite, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ) levels compared to the negative control. Immunohistochemistry analysis revealed decreased expression of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) in troxerutin-treated mice. Overall, these findings suggest that troxerutin exerts significant antidepressive-like effects, likely mediated by its anti-inflammatory and antioxidant mechanisms. The reduction in neuroinflammatory and oxidative stress biomarkers, along with the improvement in behavioral outcomes, underscores troxerutin's potential as a therapeutic agent for depression.
Collapse
Affiliation(s)
- Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
2
|
Potokiri A, Omeiza NA, Ajayi AM, Adeleke PA, Alagbonsi AI, Iwalewa EO. Yeast supplementation potentiates fluoxetine's anti-depressant effect in mice via modulation of oxido-inflammatory, CREB, and MAPK signaling pathways. Curr Res Physiol 2024; 7:100132. [PMID: 39483857 PMCID: PMC11526068 DOI: 10.1016/j.crphys.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction The therapeutic potential of yeast in the management of depression is unknown. Thus, we evaluated the modulatory effect of nutritional yeast supplementation on antidepressant activity of fluoxetine in mice models of depressive-like behaviors (DLB). Methods A total of 112 mice were divided into 16 groups (n = 7 each) for a 3-stage study. Stage I (non-DLB study) had groups Ia (10 mL/kg vehicle), Ib (20 mg/kg fluoxetine), Ic - If (2% yeast diet for all, but Id - If additionally received 5 mg/kg, 10 mg/kg, and 20 mg/kg fluoxetine respectively). Stage II (lipopolysaccharide [LPS] model of DLB) had groups IIa - IIb (10 mL/kg vehicle), IIc (20 mg/kg fluoxetine), IId (yeast) and IIe (yeast + 20 mg/kg fluoxetine). After these treatments for 24 days, animals in IIb - IIe received 0.83 mg/kg of LPS on the 25th day. Except for group IIIa (10 mL/kg vehicle), animals in other groups of stage III (unpredictable chronic mild stress [UCMS] model) were exposed to UCMS for 24 days along with 10 mL/kg vehicle (IIIb), 20 mg/kg fluoxetine (IIIc), yeast (IIId), or yeast + fluoxetine (IIIe). Results Yeast and fluoxetine attenuated LPS- and UCMS-induced immobility, derangement of oxido-inflammatory (TNF-α, IL-6, NO, MDA, SOD, GSH, CAT, and AChE) and CREB/MAPK pathways. While fluoxetine had more potent effect than yeast when used separately, pre-treatment of mice with their combination had more pronounced effect than either of them. Conclusion Yeast supplementation improves the antidepressant activity of fluoxetine in mice by modulating oxido-inflammatory, CREB, and MAPK pathways.
Collapse
Affiliation(s)
- Augustina Potokiri
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Noah A. Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Abayomi M. Ajayi
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul A. Adeleke
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abdullateef I. Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Ezekiel O. Iwalewa
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Khalid I, Saleem U, Ahmad B, Hawwal MF, Mothana RA. NMDA receptor modulation by Esculetin: Investigating behavioral, biochemical and neurochemical effects in schizophrenic mice model. Saudi Pharm J 2024; 32:101994. [PMID: 38405040 PMCID: PMC10884481 DOI: 10.1016/j.jsps.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Schizophrenia, a global mental health disorder affecting approximately 1 % of the population, is characterized by neurotransmitter dysregulation, particularly dopamine, serotonin, and glutamate. Current antipsychotic therapies, despite their efficacy, are accompanied by adverse effects, which has motivated researchers to investigate more secure substitutes. This study examines the potential antipsychotic effects of esculetin, a natural coumarin derivative recognized for its wide-ranging pharmacological activities (anti-inflammatory, antioxidant, anti-pathogenic, anticancer, and neuroprotective), in animal model of schizophrenia induced by ketamine. In order to induce disease, acute and chronic ketamine administration was performed on Swiss albino mice, supplemented with esculetin (as the test substance) and clozapine (as the reference standard). Behavioral studies and biochemical assays were performed to evaluate positive, negative, and cognitive symptoms of schizophrenia, as well as antioxidant and oxidant levels in various brain regions. Esculetin demonstrated significant improvements in behavioral symptoms, attenuated oxidative stress and neuroinflammation, and modulated neurotransmitter levels. Afterwards, ELISA was performed to evaluate levels of schizophrenia biomarkers AChE, BDNF. Moreover, proinflammatory cytokines (IL-6 and TNF-α) and NF-κB were also determined. Histopathological parameters of under study brain parts i.e., hippocampus, cortex and striata were also assessed. Esculetin and clozapine significantly (***p < 0.0001) altered ketamine induced behavioral symptoms and attenuated ketamine induced oxidative stress and neuroinflammation. Additionally, esculetin significantly (***p < 0.0001) altered neurotransmitter (dopamine, serotonin, glutamate) levels. ELISA analysis depicts ketamine reduced BDNF levels in hippocampus, cortex and striata while esculetin significantly (***p < 0.0001) increased BDNF levels in under study three parts of brain. Histopathological changes were seen in test groups. The findings of this study indicate that esculetin may have therapeutic potential in the treatment of schizophrenia induced by ketamine. As a result, esculetin may have the potential to be utilized as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Iqra Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Welsh School of Pharmacy, University of Wales, Cardiff, United Kingdom
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Rodrigues T, Bressan GN, Krum BN, Soares FAA, Fachinetto R. Influence of the dose of ketamine used on schizophrenia-like symptoms in mice: A correlation study with TH, GAD 67, and PPAR-γ. Pharmacol Biochem Behav 2023; 233:173658. [PMID: 37804866 DOI: 10.1016/j.pbb.2023.173658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Nano-hesperetin attenuates ketamine-induced schizophrenia-like symptoms in mice: participation of antioxidant parameters. Psychopharmacology (Berl) 2023; 240:1063-1074. [PMID: 36879073 DOI: 10.1007/s00213-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Antioxidant natural herb hesperetin (Hst) offers powerful medicinal properties. Despite having noticeable antioxidant properties, it has limited absorption, which is a major pharmacological obstacle. OBJECTIVES The goal of the current investigation was to determine if Hst and nano-Hst might protect mice against oxidative stress and schizophrenia (SCZ)-like behaviors brought on by ketamine (KET). METHODS Seven treatment groups (n=7) were created for the animals. For 10 days, they received distilled water or KET (10 mg/kg) intraperitoneally (i.p). From the 11th to the 40th day, they received daily oral administration of Hst and nano-Hst (10, 20 mg/kg) or vehicle. With the use of the forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), SCZ-like behaviors were evaluated. Malondialdehyde (MDA) and glutathione levels and antioxidant enzyme activities were assessed in the cerebral cortex. RESULTS Our findings displayed that behavioral disorders induced by KET would be improved by nano-Hst treated. MDA levels were much lower after treatment with nano-Hst, and brain antioxidant levels and activities were noticeably higher. The mice treated with nano-Hst had improved outcomes in the behavioral and biochemical tests when compared to the Hst group. CONCLUSIONS Our study's findings showed that nano-Hst had a stronger neuroprotective impact than Hst. In cerebral cortex tissues, nano-Hst treatment dramatically reduced KET-induced (SCZ)-like behavior and oxidative stress indicators. As a result, nano-Hst may have more therapeutic potential and may be effective in treating behavioral impairments and oxidative damage brought on by KET.
Collapse
|
6
|
Ben-Azu B, Uruaka CI, Ajayi AM, Jarikre TA, Nwangwa KE, Chilaka KC, Chijioke BS, Omonyeme MG, Ozege CB, Ofili EC, Warekoromor EB, Edigbue NL, Esiekpe UV, Akaenyi DE, Agu GO. Reversal and Preventive Pleiotropic Mechanisms Involved in the Antipsychotic-Like Effect of Taurine, an Essential β-Amino Acid in Ketamine-Induced Experimental Schizophrenia in Mice. Neurochem Res 2023; 48:816-829. [PMID: 36350433 DOI: 10.1007/s11064-022-03808-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia is a life disabling, multisystem neuropsychiatric disease mostly derived from complex epigenetic-mediated neurobiological changes causing behavioural deficits. Neurochemical disorganizations, neurotrophic and neuroimmune alterations are some of the challenging neuropathologies proving unabated during psychopharmacology of schizophrenia, further bedeviled by drug-induced metabolic derangements including alteration of amino acids. In first-episode schizophrenia patients, taurine, an essential β-amino acid represses psychotic-symptoms. However, its anti-psychotic-like mechanisms remain incomplete. This study evaluated the ability of taurine to prevent or reverse ketamine-induced experimental psychosis and the underlying neurochemical, neurotrophic and neuroinmune mechanisms involved in taurine's clinical action. The study consisted of three different experiments with Swiss mice (n = 7). In the drug alone, mice received saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) for 14 days. In the preventive study of separate cohort, mice were concomitantly given ketamine (20 mg/kg/i.p./day) from days 8 to 14. In the reversal study, mice received ketamine for 14 days before taurine or risperidone treatments from days 8 to 14 respectively. Afterwards, stereotypy behaviour, social, non-spatial memory deficits, and body weights were assessed. Neurochemical (dopamine, 5-hydroxytryptamine, glutamic acid decarboxylase, (GAD)), brain derived-neurotrophic factor (BDNF) and pro-inflammatory cytokines [tumor necrosis factor-alpha, (TNF-α), interleukin-6, (IL-6)] were assayed in the striatum, prefrontal-cortex and hippocampal area. Taurine attenuates ketamine-induced schizophrenia-like behaviour without changes in body weight. Taurine reduced ketamine-induced dopamine and 5-hydroxytryptamine changes, and increased GAD and BDNF levels in the striatum, prefrontal-cortex and hippocampus, suggesting increased GABAergic and neurotrophic transmissions. Taurine decreases ketamine-induced increased in TNF-α and IL-6 concentrations in the striatum, prefrontal-cortex and hippocampus. These findings also suggest that taurine protects against schizophrenia through neurochemical modulations, neurotrophic enhancement, and inhibition of neuropathologic cytokine activities.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Christian I Uruaka
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Rivers State University, Port Harcourt, Rivers State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kingsley E Nwangwa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Kingsley C Chilaka
- Department of Pharmacology and Therapeutics, College of Health Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Bienose S Chijioke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marymagdalene G Omonyeme
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chineye B Ozege
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuella C Ofili
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ebidenara B Warekoromor
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Nwanneka L Edigbue
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ufoma V Esiekpe
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Dabrechi E Akaenyi
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gladys O Agu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Afe Babalo University, Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
7
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|