1
|
He J, Cui Y, Liu Y, Mao J, Dong Y, Yao R, Yang D, Fan P, Xue J. Resveratrol inhibits the formation of Staphylococcus aureus biofilms by reducing PIA, eDNA release, and ROS production. Front Vet Sci 2025; 12:1594239. [PMID: 40370837 PMCID: PMC12076522 DOI: 10.3389/fvets.2025.1594239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Staphylococcus aureus is a zoonotic pathogen that is difficult to control. Resveratrol (RES) has been shown to have significant antibacterial effects. The present study aimed to investigate the inhibitory effect of RES on the formation of Staphylococcus aureus biofilms and their molecular mechanism. Methods First, the minimum inhibitory concentration and inhibitory action curve of RES against Staphylococcus aureus were obtained through testing. Second, we found that RES can inhibit biofilm formation by reducing the release of polysaccharide intercellular adhesion (PIA) and extracellular DNA (eDNA) from Staphylococcus aureus. Results RES treatment significantly reduced the production of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) in Staphylococcus aureus, indicating that ROS and NADPH are closely related to biofilm formation. Conclusion This study demonstrates that RES inhibits the formation of Staphylococcus aureus biofilms by reducing PIA, eDNA release, and ROS production, and these results provide new ideas for the clinical application of RES in the treatment of Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Jinfei He
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yan Liu
- College of Life Sciences and Food Engineering, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yanxin Dong
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Dahan Yang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Peichao Fan
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jiangdong Xue
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|
2
|
Xu Y, Wang Y, Chen Y, Wang Y, Zhang S, Luo G, Cui F, Du T, Liu Z. TCMD: A High-Throughput and Rapid Method for Screening Antimicrobial Ingredients from Renewable Bio-Based Resources. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502156. [PMID: 40289662 DOI: 10.1002/advs.202502156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Antibiotic resistance and pathogenic infections underscore the importance and urgency of novel control agent development. Bio-based products represent a rich reservoir of antimicrobial agents. However, traditional strategies for screening new active compounds are time-consuming, costly, and limited by accessible resources. Here, transcriptomic combinatorial molecular docking (TCMD), a novel method enabling fast identification of antimicrobial components in complex mixtures without requiring prior knowledge is proposed. Results show that, in eukaryotic microorganism systems, TCMD demonstrates superior performances in screening antifungal compounds within hydrothermal liquefaction aqueous. The high accuracy is confirmed by molecular dynamics simulation, antifungal experiments, and RT-qPCR (reverse transcription real-time quantitative polymerase chain reaction) analysis. Furthermore, TCMD exhibits cross-system applicability, as evidenced by successful antibacterial substances screening in prokaryotic systems using plant essential oil and traditional Chinese medicine from previous studies. Compared to conventional approaches, TCMD is estimated to be 3-20 times faster and ≈10 times more cost-effective, while maintaining high-throughput capacity for analyzing thousands of compounds simultaneously. These demonstrate that TCMD is a rapid, precise, and flexible method for antimicrobial compound discovery, significantly accelerating the development of new antibacterial agents.
Collapse
Affiliation(s)
- Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
- Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongming Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 261325, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Wen MM, Abdelwahab IA, Abozahra R, Abdelhamid SM, Baraka K, Ahmed HES, El-Hadidy WF. Sustainable nanophytosome-based therapies against multidrug-resistant Escherichia coli in urinary tract infections: an in Vitro and in vivo study. J Nanobiotechnology 2025; 23:174. [PMID: 40050888 PMCID: PMC11883929 DOI: 10.1186/s12951-024-03006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/10/2024] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Urinary tract infection (UTI) is a prevalent bacterial infection impacting a significant number of individuals globally. The rise in multidrug-resistant (MDR) E. coli strains as the predominant cause of UTIs presents a substantial public health concern and poses a challenge to existing antibiotic treatments. This study introduces an innovative and sustainable therapeutic approach utilizing rosemary oil nanophytosomes as a targeted drug delivery system to address biofilms in UTIs induced by MDR E. coli. METHOD Seventy clinically identified E. coli isolates from UTI patients were used for this study. Nanophytosomes were formulated with chitosan (CS) and nanostructured lipid carriers. CS-nanophytosomes were lyophilized to evaluate the storage stability. In vivo study included 40 female Wistar rats with daily treatment over seven days. For all the statistical tests, differences were considered significant at p < 0.01 and highly significant at p < 0.001. RESULTS CS-nanophytosomes demonstrated a particle size of 176.70 ± 12.30 nm with a substantial antibiofilm efficacy against MDR E. coli. High entrapment efficiency was ascertained with 93.12 ± 1.05%. The drug release study showed that the pure rosemary oil exhibited a notably lower release of 35.4 ± 2.36% over 48 h. In contrast, the CS-nanophytosomes and lyophilized CS-nanophytosomes displayed significantly higher release percentages of 58.6 ± 3.69% and 56.9 ± 5.01%, respectively, compared to the pure rosemary oil of 35.4 ± 2.36% over 48 h. The in vivo study indicated that nanophytosomes successfully reduced the bacterial load in the urine, bladder, and kidney tissues of mice infected with MDR E. coli, while also lowering the levels of inflammatory cytokines and oxidative stress markers in serum and urine samples. Additionally, the nanophytosomes improved histopathological changes in bladder and kidney tissues caused by UTI without causing any toxicity or adverse effects on kidney function or hematological parameters. CONCLUSION Our research introduces a cost-effective and innovative approach to addressing UTIs caused by MDR E. coli by the use of rosemary oil, a natural antimicrobial agent encapsulated in nanophytosomes. This strategy not only demonstrates proven therapeutic efficacy in UTI animal models but also promotes the adoption of sustainable medical approaches. CS-nanophytosomes provides a sustainable alternative therapeutic option to combat MDR UTIs.
Collapse
Affiliation(s)
- Ming Ming Wen
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ibrahim A Abdelwahab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Rania Abozahra
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Sarah M Abdelhamid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Kholoud Baraka
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Heba Essam Sedky Ahmed
- Department of Pharmacology & Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Wessam F El-Hadidy
- Department of Pharmacology & Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Wei PW, Wang X, Wang C, Chen M, Liu MZ, Liu WX, He YL, Xu GB, Zheng XH, Zhang H, Liu HM, Wang B. Ginkgo biloba L. exocarp petroleum ether extract inhibits methicillin-resistant Staphylococcus aureus by modulating ion transport, virulence, and biofilm formation in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117957. [PMID: 38493904 DOI: 10.1016/j.jep.2024.117957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As reported in the Ancient Chinese Medicinal Books, Ginkgo biloba L. fruit has been used as a traditional Chinese medicine for the treatment asthma and cough or as a disinfectant. Our previous study demonstrated that G. biloba exocarp extract (GBEE), an extract of a traditional Chinese herb, inhibits the formation of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. However, GBEE is a crude extract that contains many components, and the underlying mechanisms of purified GBEE fractions extracted with solvents of different polarities are unknown. AIM OF THE STUDY This study aimed to investigate the different components in GBEE fractions extracted with solvents of different polarities and their antibacterial effects and mechanisms against MRSA and Staphylococcus haemolyticus biofilms both in vitro and in vivo. METHODS The components in different fractions were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). Microbroth dilution assays and time growth curves were used to determine the antibacterial effects of the fractions on 15 clinical bacterial isolates. Crystal violet staining, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to identify the fractions that affected bacterial biofilm formation. The potential MRSA targets of the GBEE fraction obtained with petroleum ether (PE), denoted GBEE-PE, were screened by transcriptome sequencing, and the gene expression profile was verified by quantitative polymerase chain reaction (qPCR). RESULTS HPLC-HRMS analysis revealed that the four GBEE fractions (extracted with petroleum ether, ethyl acetate, n-butanol, and water) contained different ginkgo components, and the antibacterial effects decreased as the polarity of the extraction solvent increased. The antibacterial activity of GBEE-PE was greater than that of the GBEE fraction extracted with ethyl acetate (EA). GBEE-PE improved H. illucens survival and reduced MRSA colonization in model mouse organs. Crystal violet staining and SEM and TEM analyses revealed that GBEE-PE inhibited MRSA and S. haemolyticus biofilm formation. Transcriptional analysis revealed that GBEE-PE inhibits MRSA biofilms by altering ion transport, cell wall metabolism and virulence-related gene expression. In addition, the LO2 cell viability and H. illucens toxicity assay data showed that GBEE-PE at 20 mg/kg was nontoxic. CONCLUSION The GBEE fractions contained different components, and their antibacterial effects decreased with increases in the polarity of the extraction solvent. GBEE-PE limited MRSA growth and biofilm formation by affecting ion transport, cell wall synthesis, and virulence-related pathways. This research provides a more detailed overview of the mechanism by which GBEE-PE inhibits MRSA both in vitro and in vivo and suggests that GBEE-PE is a new prospective antimicrobial with the potential to be used in MRSA therapeutics in the future.
Collapse
Affiliation(s)
- Peng-Wei Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Cong Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Formulation (R&D) Department, Guiyang, 550001, China
| | - Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China
| | - Meng-Zhu Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, Guizhou, China
| | - Yan-Ling He
- Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, Zhejiang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
| | - Xiao-He Zheng
- Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, 318000, Zhejiang, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, 550002, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China.
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (Modern Industry College of Health Medicine), Guizhou Medical University, Guiyang, 561113, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (School of Public Health, Guizhou Medical University), Guiyang, 561113, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
5
|
Li S, Li N, Wang Y, Zhang X, Wang J, Zhang M, Chen H. Structural Characterization of the Staphylococcus aureus Targeting Lectin Peptides from Garlic (Allium sativum L) by Liquid Nitrogen Grinding Coupled with the Proteomic and Antimicrobial Mechanism Analysis. Probiotics Antimicrob Proteins 2024; 16:964-978. [PMID: 37217612 DOI: 10.1007/s12602-023-10078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Garlic has long been used as an antimicrobial spice and herbal remedy. The aim of this study was to isolate the antimicrobial agent in garlic water extract against Staphylococcus aureus (S. aureus) and investigate its antimicrobial mechanism. By an activity-guided separation, garlic lectin-derived peptides (GLDPs) with main molecular weight of around 12 kDa were extracted by liquid nitrogen grinding and identified with high bactericidal activity toward S. aureus, and the MIC was determined as 24.38 μg/mL. In-gel digestion-based proteomic analysis indicated that the peptide sequences were highly identical to the B strain of garlic protein lectin II. Structure analysis suggested that the secondary structure was strongly affected by lyophilization and thus resulted in the inactivation of GLDPs (P < 0.05). Mechanism study revealed that treatment of GLDPs resulted in cell membrane depolarization in a dose-dependent manner, and the disruptions of the cell wall and membrane integrities were observed under electric microscopies. GLDPs could successfully dock with cell wall component lipoteichoic acid (LTA) via van der Waals and conventional bonds in molecular docking analysis. These results suggested that GLDPs were responsible for the S. aureus targeting activity and might be promising candidates for antibiotic development against bacterial infection.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
6
|
Chen M, Huang WK, Yao Y, Wu SM, Yang YX, Liu WX, Luo G, Wei SF, Zhang H, Liu HM, Wang B. Heterologous expression of the insect SVWC peptide WHIS1 inhibits Candida albicans invasion into A549 and HeLa epithelial cells. Front Microbiol 2024; 15:1358752. [PMID: 38873147 PMCID: PMC11169590 DOI: 10.3389/fmicb.2024.1358752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Candida albicans (C. albicans), a microbe commonly isolated from Candida vaginitis patients with vaginal tract infections, transforms from yeast to hyphae and produces many toxins, adhesins, and invasins, as well as C. albicans biofilms resistant to antifungal antibiotic treatment. Effective agents against this pathogen are urgently needed. Antimicrobial peptides (AMPs) have been used to cure inflammation and infectious diseases. In this study, we isolated whole housefly larvae insect SVWC peptide 1 (WHIS1), a novel insect single von Willebrand factor C-domain protein (SVWC) peptide from whole housefly larvae. The expression pattern of WHIS1 showed a response to the stimulation of C. albicans. In contrast to other SVWC members, which function as antiviral peptides, interferon (IFN) analogs or pathogen recognition receptors (PRRs), which are the prokaryotically expressed MdWHIS1 protein, inhibit the growth of C. albicans. Eukaryotic heterologous expression of WHIS1 inhibited C. albicans invasion into A549 and HeLa cells. The heterologous expression of WHIS1 clearly inhibited hyphal formation both extracellularly and intracellularly. Furthermore, the mechanism of WHIS1 has demonstrated that it downregulates all key hyphal formation factors (ALS1, ALS3, ALS5, ECE1, HWP1, HGC1, EFG1, and ZAP1) both extracellularly and intracellularly. These data showed that heterologously expressed WHIS1 inhibits C. albicans invasion into epithelial cells by affecting hyphal formation and adhesion factor-related gene expression. These findings provide new potential drug candidates for treating C. albicans infection.
Collapse
Affiliation(s)
- Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Wei-Kang Huang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi-Mei Wu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Luo
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shao-Feng Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| |
Collapse
|
7
|
Rossi CC, Ahmad F, Giambiagi-deMarval M. Staphylococcus haemolyticus: An updated review on nosocomial infections, antimicrobial resistance, virulence, genetic traits, and strategies for combating this emerging opportunistic pathogen. Microbiol Res 2024; 282:127652. [PMID: 38432015 DOI: 10.1016/j.micres.2024.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Staphylococcus haemolyticus, a key species of the Staphylococcus genus, holds significant importance in healthcare-associated infections, due to its notable resistance to antimicrobials, like methicillin, and proficient biofilms-forming capabilities. This coagulase-negative bacterium poses a substantial challenge in the battle against nosocomial infections. Recent research has shed light on Staph. haemolyticus genomic plasticity, unveiling genetic elements responsible for antibiotic resistance and their widespread dissemination within the genus. This review presents an updated and comprehensive overview of the clinical significance and prevalence of Staph. haemolyticus, underscores its zoonotic potential and relevance in the one health framework, explores crucial virulence factors, and examines genetics features contributing to its success in causing emergent and challenging infections. Additionally, we scrutinize ongoing studies aimed at controlling spread and alternative approaches for combating it.
Collapse
Affiliation(s)
- Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil.
| | - Faizan Ahmad
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil
| | | |
Collapse
|
8
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
9
|
Yang S, Wang B, Li J, Zhao X, Zhu Y, Sun Q, Liu H, Wen X. Genetic Diversity, Antibiotic Resistance, and Virulence Gene Features of Methicillin-Resistant Staphylococcus aureus Epidemics in Guiyang, Southwest China. Infect Drug Resist 2022; 15:7189-7206. [PMID: 36514797 PMCID: PMC9741838 DOI: 10.2147/idr.s392434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of community- and hospital-acquired infections, and its prevalence is increasing globally. Guiyang is the capital city of Guizhou Province, Southwest China; as the transport and tourism centre of Southwest China, Guizhou Province is bordered by Yunnan, Sichuan, Chongqing, and Guangxi Provinces. Although MRSA prevalence is increasing, little is known about its aspects in the area. The purpose of this study was to analyse MRSA molecular characteristics, antimicrobial resistance, and virulence genes in Guiyang. Methods In total, 209 MRSA isolates from four hospitals (2019-2020) were collected and analysed by antimicrobial susceptibility testing and molecular classification by the MLST, spa, and SCCmec typing methods. Isolate antibiotic resistance rates were detected by a drug susceptibility assays. PCR amplification was used to detect the virulence gene-carrying status. Results Twenty-four STs, including 4 new STs (ST7346, ST7347, ST7348, and ST7247) and 3 new allelic mutations, were identified based on MLST. The major prevalent ST type and clone complex were ST59 (49.8%) and CC59 (62.7%), respectively. Spa type t437 (42.1%) and SCCmec IV (55.5%) were identified by spa and SCCmec typing methods as the most important types. Drug sensitivity data showed that the multidrug resistance rate was 79.0%. There were significant differences in multidrug resistance rates and virulence gene-carrying rates for seb, hla, hlb, cna and bap between ST59 and non-ST59 types. Conclusion ST59-SCCmecIV-t437 is a major epidemic clone in Guiyang that should be monitored by local medical and health institutions. The situation differs from other adjacent or middle provinces of China, which may be due to the special geographical location of the region and the trend in antibiotic use or lifestyle. This study provides empirical evidence for local medical and health departments to prevent and control the spread of MRSA.
Collapse
Affiliation(s)
- SuWen Yang
- School of Basic Medical Sciences, Basic Medical School, Guizhou Medical University, Guiyang, 550025, People’s Republic of China,Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,People’s Hospital of Kaiyang, Guiyang, 550300, People’s Republic of China
| | - Bing Wang
- Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jing Li
- Department of Microbial Immunology, The First Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Xue Zhao
- Department of Clinical Laboratory, The First People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - Yan Zhu
- Department of Clinical Laboratory, The Fourth People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - Qian Sun
- Department of Emergency Medicine, The First People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - HongMei Liu
- Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - XiaoJun Wen
- School of Basic Medical Sciences, Basic Medical School, Guizhou Medical University, Guiyang, 550025, People’s Republic of China,Correspondence: XiaoJun Wen; HongMei Liu, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Email ;
| |
Collapse
|