1
|
Liu Y, Qu Y, Liu C, Zhang D, Xu B, Wan Y, Jiang P. Neutrophil extracellular traps: Potential targets for the treatment of rheumatoid arthritis with traditional Chinese medicine and natural products. Phytother Res 2024; 38:5067-5087. [PMID: 39105461 DOI: 10.1002/ptr.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Abnormal formation of neutrophil extracellular traps (NETs) at the synovial membrane leads to the release of many inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Elastase, histone H3, and myeloperoxidase, which are carried by NETs, damage the soft tissues of the joints and aggravate the progression of RA. The balance of NET formation coordinates the pro-inflammatory and anti-inflammatory effects and plays a key role in the development of RA. Therefore, when NETs are used as effector targets, highly targeted drugs with fewer side effects can be developed to treat RA without damaging the host immune system. Currently, an increasing number of studies have shown that traditional Chinese medicines and natural products can regulate the formation of NETs through multiple pathways to counteract RA, which shows great potential for the treatment of RA and has a promising future for clinical application. In this article, we review the latest biological progress in understanding NET formation, the mechanism of NETs in RA, and the potential targets or pathways related to the modulation of NET formation by Chinese medicines and natural products. This review provides a relevant basis for the use of Chinese medicines and natural products as natural adjuvants in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Liu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Yuan Qu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yakun Wan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Wang W, Zhang ZQ, Zhang YC, Wu YQ, Yang Z, Zheng YZ, Lu JH, Tu PF, Zeng KW. Cayratia albifolia C.L.Li exerts anti-rheumatoid arthritis effect by inhibiting macrophage activation and neutrophil extracellular traps (NETs). Chin Med 2024; 19:42. [PMID: 38444022 PMCID: PMC10913656 DOI: 10.1186/s13020-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zai-Qi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 41800, China.
| | - Yi-Chi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi-Qiang Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, SAR, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Cao F, Zhang Y, Zong Y, Feng X, Deng J, Wang Y, Cao Y. Exploring the potential mechanism of Simiao Yongan decoction in the treatment of diabetic peripheral vascular disease based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2023; 102:e36762. [PMID: 38206683 PMCID: PMC10754584 DOI: 10.1097/md.0000000000036762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
The study aims to investigate the potential action targets and molecular mechanisms of Simiao Yongan decoction (SMYAD) in treating diabetic peripheral vascular disease (DPVD) by utilizing network pharmacology analysis and molecular docking technology. The components and targets of SMYAD were screened using the TCMSP database, while DPVD-related genes were obtained from the GeneCards, OMIM, and Disgenet databases. After intersecting the gene sets, a Protein-Protein Interaction (PPI) network was established, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out. The practical chemical components and core targets identified were molecularly docked using AutoDock software. A total of 126 active compounds were screened from which 25 main components included quercetin, rutoside, hesperidin, naringin, and β-sitosterol were determined to be the active components most associated with the core targets. A total of 224 common target genes were obtained. Among them, JUN, AKT1, MAPK3, TP53, STAT3, RELA, MAPK1, FOS, and others are the expected core targets of traditional Chinese medicine. The top-ranked GO enrichment analysis results included 727 biological processes (BP), 153 molecular functions (MF), and 102 cellular components (CC). KEGG pathway enrichment analysis involved mainly 178 signaling pathways, such as cancer signaling pathway, AGE-RAGE signaling pathway, interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, endocrine resistance signaling pathway, cell aging signaling pathway, and so on. The molecular docking results demonstrate that the principal chemical components of SMYAD exhibit considerable potential for binding to the core targets. SMYAD has the potential to treat DPVD through various components, targets, and pathways. Its mechanism of action requires further experimental investigation.
Collapse
Affiliation(s)
- Fang Cao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zong
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Feng
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junlin Deng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuzhen Wang
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang Y, Pan X, Wang J, Chen H, Chen L. Exploration of Simiao-Yongan Decoction on knee osteoarthritis based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e35193. [PMID: 37800753 PMCID: PMC10552997 DOI: 10.1097/md.0000000000035193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Use network pharmacology combined with molecular docking to study the effects of Simiao-Yongan Decoction (SMYAD) intervenes in Knee Osteoarthritis (KOA) related targets and signaling pathways, and explores the molecular mechanism of SMYAD in treating KOA. The active ingredients and targets of SMYAD, which concluded 4 traditional Chinese medicines, were screened in TCMSP, and the related gene targets of KOA were screened in the disease databases GeneCards, MalaCards, DisGeNET, and Comparative Toxicogenomics Database, and their intersection data were obtained after integration. And used Cytoscape 3.9.1, the software topologies the network diagram of "compound-drug-active ingredient-target protein-disease." Obtains the protein-protein interaction network diagram through STRING, and enriches and analyzes the obtained core targets. Carry out molecular docking matching verification on the main active ingredients and key targets of the drug. 106 active ingredients and 175 targets were screened from SMYAD to intervene in KOA, 36 core targets were obtained through protein-protein interaction screening, and 10 key targets played an important role. The enrichment results showed that the biological process of gene ontology mainly involved positive regulation of gene expression, negative regulation of apoptosis process, and positive regulation of apoptosis process. KEGG signaling pathway mainly involves AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, hypoxia-inducible factor-1 signaling pathway, IL-17 signaling pathway. The pathway of Reactome mainly involves interleukin-4 and interleukin-13 signaling, cytokine signaling in immune system, immune system, apoptosis. Molecular docking showed that the mainly effective components of SMYAD can fully combine with TNF, IL1B, IL6, and CASP3. The results show that the main active ingredients and potential mechanism of action of SMYAD in the treatment of KOA have the characteristics of multiple targets and multiple pathways, which provides ideas and basis for further in-depth exploration of its specific mechanism.
Collapse
Affiliation(s)
- Ying Wang
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan Province, China
| | - Xiangyu Pan
- Department of Rehabilitation Medicine, Zigong First People’s Hospital, Zigong, Sichuan Province, China
| | - Junwei Wang
- Department of Pediatric Surgery & Vascular Surgery, Zigong Fourth People’s Hospital, Zigong, Sichuan Province, China
| | - Haixu Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan Province, China
| | - Lan Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan Province, China
| |
Collapse
|
5
|
Chang Y, Ou Q, Zhou X, Nie K, Liu J, Zhang S. Global research trends and focus on the link between rheumatoid arthritis and neutrophil extracellular traps: a bibliometric analysis from 1985 to 2023. Front Immunol 2023; 14:1205445. [PMID: 37680637 PMCID: PMC10481536 DOI: 10.3389/fimmu.2023.1205445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that currently has an unknown cause and pathogenesis, and is associated with many complications and a high disability rate. The neutrophil extracellular trap network (NETs) is a newly discovered mechanism that allows neutrophils to capture and kill pathogens. Multiple studies in recent years have highlighted its relevance to the progression of rheumatoid arthritis. Despite the growing number of studies indicating the crucial role of NETs in RA, there has been no bibliometric review of research hotspots and trends in this area. In this study, we retrieved articles related to NETs in RA from the Web of Science Core Collection (WoSCC) database from 1985 to 2023 and used visualization tools such as Citespace, VOSviewer, Tableau Public, and Microsoft Office Excel 2021 to analyze the data. After screening, we included a total of 416 publications involving 2,334 researchers from 1,357 institutions in 167 countries/regions, with relevant articles published in 219 journals. The U.S., China, and Germany are the top 3 countries/regions with 124, 57, and 37 publications respectively. Mariana J. Kaplan is the most published author, and journals such as Frontiers in Immunology and International Journal of Molecular Sciences have had a significant impact on research in this field. The clinical application of PAD enzymes and their inhibitors, and the drug development of NETs as therapeutic targets for RA is a trend for future research. Our study provides a comprehensive bibliometric analysis and summary of NETs in RA publications, which will aid researchers in conducting further scientific research.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
6
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|