1
|
Lin J, Ran H, Feng Q, Shen Q, Zhou S, Sun Y, Hou D. Unveiling the differences between vitexin and isovitexin: From the perspective of sources, green advanced extraction technologies, biological activities, and safety. Food Chem 2025; 485:144600. [PMID: 40334576 DOI: 10.1016/j.foodchem.2025.144600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Vitexin and isovitexin, as the two of representative flavonoid C-glycosides, are naturally occurring bioactive compounds predominantly found in food plants. Their multiple pharmacological activities have generated a lot of interest in their application in disease management. However, as isomers, vitexin and isovitexin show differences between them in various aspects. To achieve their personalized application in precision nutrition, further research is needed to reveal their differences. Based on the various sources and distribution of vitexin and isovitexin, the advantages and limitations of various green advanced extraction technologies are discussed to improve their purity and activity. Furthermore, vitexin and isovitexin exhibit shared and diverse health benefits from the perspective of in vitro and in vivo research reports. This review contributes to a better understanding of the sustainable production of natural vitexin and isovitexin based on their differences, thus promoting the personalized application of them in the functional foods or pharmaceutical industries.
Collapse
Affiliation(s)
- Jinquan Lin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Hao Ran
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qiqian Feng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Sumei Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuanlin Sun
- Shanxi Technology Innovation Center of High Value-Added Echelon Utilization of Premium Agro-Products, Yuncheng 044011, China
| | - Dianzhi Hou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
2
|
de Lima BRF, de Siqueira Patriota LL, de Oliveira Marinho A, da Costa JA, Ribeiro BG, de Souza Santos VB, Napoleão DC, Cavalcanti JVFL, Vieira LD, Pereira MC, de Melo Rego MJB, Pitta MGDR, Napoleão TH, Paiva PMG, da Rosa MM. Subacute symptoms of depression and anxiety in stress-exposed mice: Role of Schinus terebinthifolia Raddi leaf lectin (SteLL). JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119343. [PMID: 39805478 DOI: 10.1016/j.jep.2025.119343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes. Among these, the use of bark-and-leaf tea and leaf decoction to treat depression has been reported. Previous studies showed that the S. terebinthifolia leaf lectin (SteLL) can ameliorate anxiety and depression symptoms in mice. AIM OF THE STUDY To investigate SteLL as a compound from S. terebinthifolia leaf able to alleviate symptoms of depression and anxiety in an unpredictable chronic mild stress (UCMS) animal model. METHODS Mice were subjected to four-week UCMS and then treated with SteLL at 2 and 4 mg/kg (i.p.) or with fluoxetine at 10 mg/kg i.p. (positive control) for 21 days. Behavioral assessments were conducted using the open field test, elevated plus maze, tail suspension test, and sucrose preference test. Serum corticosterone and inflammatory markers (cytokines) levels were determined. The levels of cytokine, oxidative stress indicators and monoamines in brain homogenates were also measured to understand the biochemical changes induced by SteLL treatment. RESULTS SteLL treatment at both doses significantly (p < 0.05) alleviated the stress-induced behavior in mice, reducing the anxiety and depression signals in all tests. SteLL administration increased the brain levels of monoamines noradrenaline and serotonin in comparison with UCMS control mice that received only vehicle. SteLL reduced superoxide production, lipid peroxidation and improved reduced glutathione (GSH) levels in the brain. The lectin also increased serum and brain levels of anti-inflammatory cytokine IL-4, while reducing levels of pro-inflammatory cytokines. Serum corticosterone levels were not decreased by lectin treatment. CONCLUSION Our findings highlight SteLL as a neuromodulatory agent from S. terebinthifolia leaves effective in subacute and stress-induced anxiety and depression through modulation of monoaminergic, oxidative stress, and inflammatory pathways. The data shows the potential of this lectin as a therapeutic agent for stress-related neuropsychological disorders.
Collapse
Affiliation(s)
| | | | | | - Jainaldo Alves da Costa
- Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Beatriz Galdino Ribeiro
- Department of Chemical Engineering, Center for Technology and Geosciences, Universidade Federal de Pernambuco, Recife, Brazil.
| | | | - Daniella Carla Napoleão
- Department of Chemical Engineering, Center for Technology and Geosciences, Universidade Federal de Pernambuco, Recife, Brazil.
| | | | - Leucio Duarte Vieira
- Department of Physiology and Pharmacology, Center for Biosciences, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Michelly Cristiny Pereira
- Department of Physiology and Pharmacology, Center for Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil.
| | - Moacyr Jesus Barreto de Melo Rego
- Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil.
| | - Maira Galdino da Rocha Pitta
- Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil.
| | - Thiago Henrique Napoleão
- Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil.
| | | | - Michelle Melgarejo da Rosa
- Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
3
|
Raza Ishaq A, A S El-Nashar H, M Al-Qaaneh A, Asfandyar, Bashir A, Younis T. Orientin: a natural glycoside with versatile pharmacological activities. Nat Prod Res 2025:1-23. [PMID: 39757367 DOI: 10.1080/14786419.2024.2436119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Orientin is one of the flavonoid glycosides with diverse biological properties such as anticancer, antioxidant, neuroprotective, cardioprotective, antiallergic, and anti-inflammatory. It is found in several plants like rooibos tea, Ocimum sanctum, Trollius, Passiflora, and Phyllostachys species. This review aimed to summarise the various medicinal properties of the orientin focusing on its underlying molecular mechanism reported based on in-vitro and in-vivo studies. The data were collected using various search engines, incorporating PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings showed that orientin exhibited promising anticancer, neuroprotective, anti-inflammatory, and antioxidant activities. Hopefully, this information could assist drug researchers and pharmaceutical entities in finding an effective herbal drug for the treatment of different disorders with potential mechanisms of action. Meanwhile, further investigations are warranted such as oral bioavailability, pharmacokinetics and pharmacodynamic characteristics of orientin to establish fully drug profiling suitable for clinical trials.
Collapse
Affiliation(s)
- Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, College of Life Science, Hubei University, Wuhan, China
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Egypt
| | - Ayman M Al-Qaaneh
- Faculty of Allied Medical Sciences, Al-Balqa Applied University (BAU), Al-Salt, Jordan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, College of Life Science, Hubei University, Wuhan, China
| | - Aneela Bashir
- School of Life Sciences, Chongqing UniversityShazheng, Chongqing, China
| | - Tahira Younis
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, The Women University Multan, Multan, Pakistan
| |
Collapse
|
4
|
Kumari N, Mittal A, Rana A, Sharma AK. Identification of different extracts and phytoconstituents of Callistemon viminalis Cheel for their anti-anxiety effects based on pharmacognostic, toxicological, and pharmacological strategies. Toxicol Rep 2024; 13:101726. [PMID: 39309633 PMCID: PMC11416648 DOI: 10.1016/j.toxrep.2024.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Psychiatric disorders like depression and anxiety are global challenges, exacerbated by the limitations of synthetic medications, including addiction and toxic side effects. Methods This study meticulously investigated the pharmacognostic, phytochemical, toxicological, and pharmacological properties of Callistemon viminalis Cheel. Toxicological assessments, including hemocompatibility assays, LD50 studies, FOB analysis, biochemical parameters, and structural integrity of vital organs, were conducted on aqueous, methanolic, chloroform, and petroleum ether extracts of leaves and stems. Phytochemical profiling via qualitative tests and GC-MS screened extracts for molecular docking against key receptors. Categorically screened extracts were evaluated for therapeutic potential against LPS-induced anxiety in mice. Results Toxicological evaluations on experimental animals demonstrated the safety of various extracts, evidenced by no in vitro and in vivo toxicity. GC-MS identified numerous phytochemicals that passed "Lipinski's Rule of Five." These compounds were screened for molecular docking, revealing significant binding affinities with CB1, SERT, α2A-AR, and GABAβ2 receptors, suggesting potential therapeutic effects against anxiety. The phytoconstituents with the highest docking scores, particularly in aqueous and methanolic extracts, were further validated for their therapeutic efficacy. Preliminary analysis based on the EPM test and serum cortisol levels confirmed these extracts' superior therapeutic effectiveness. Conclusion In conclusion, aqueous and methanolic extracts of Callistemon viminalis Cheel's leaf and stem showed promising potential as therapeutic interventions for anxiety disorders.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Pharmacognosy and Phytochemistry, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, Haryana 122413, India
| | - Arun Mittal
- Department of Pharmacognosy and Phytochemistry, Hindu College of Pharmacy, Sonipat, Haryana 131001, India
| | - Arpana Rana
- Department of Pharmaceutical Chemistry, Advanced Institute of Pharmacy, Palwal, Haryana 121102, India
| | - Arun K. Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, Haryana 122413, India
| |
Collapse
|
5
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
6
|
Olubodun-Obadun TG, Ishola IO, Folarin OR, Oladoja FA, Gilbert TT, Aniekwensi IM, Bisiriyu A, Joseph-Iwebi NA, Adebanjo FO, Olopade JO, Adeyemi OO. Cajanus cajan (L) Millsp seeds extract prevents rotenone-induced motor- and non-motor features of Parkinson disease in mice: Insight into mechanisms of neuroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117623. [PMID: 38128890 DOI: 10.1016/j.jep.2023.117623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cajanus cajan (L) Millsp (Fabaceae) seed decoction is used by traditional healers in Nigeria as nerve tonic, hence, could be beneficial in the treatment of Parkinson's disease (PD), a progressive and debilitating neurodegenerative disease that imposes great burden on the healthcare system globally. AIM OF THE STUDY This study aimed at investigating the neuroprotective effect of ethanol seed extract of Cajanus cajan (CC) in the treatment of rotenone-induced motor symptoms and non-motor symptoms associated with PD. MATERIALS AND METHODS To assess the protective action of CC on rotenone-induced motor- and non-motor symptoms of PD, mice were first pretreated with CC (50, 100 or 200 mg/kg, p.o.) an hour before oral administration of rotenone (1 mg/kg, p.o, 0.5% in carboxyl-methylcellulose) for 28 consecutive days and weekly behavioural tests including motor assessment (open field test (OFT), rotarod, pole and cylinder tests) and non-motor assessment (novel object recognition (NOR), Y-maze test (YM), forced swim and tail suspension, gastric emptying and intestinal fluid accumulation tests) were carried out. The animals were euthanized on day 28 followed by the collection of brain for assessment of oxidative stress, inflammatory markers and immunohistochemical analysis of the striatum (STR) and substantia nigra (SN). Phytochemicals earlier isolated from CC were docked with protein targets linked with PD pathology such as; catechol-O-methyltransferase (COMT), tyrosine hydroxylase (TH) and Leucine rich receptor kinase (LRRK). RESULTS this study showed that CC significantly reduced rotenone-induced spontaneous motor impairment in OFT, pole, cylinder and rotarod tests in mice as well as significant improvement in non-motor features (significant reversal of rotenone-induced deficits discrimination index and spontaneous alternation behaviour in NORT and YM test, respectively, reduction in immobility time in forced swim/tail suspension test, gastrointestinal disturbance in intestinal transit time in mice. Moreso, rotenone-induced neurodegeneration, oxidative stress and neuroinflammation were significantly attenuated by CC administration. In addition, docking analysis showed significant binding affinity of CC phytochemicals with COMT, TH and LRRK2 receptors. CONCLUSION Cajanus cajan seeds extract prevented both motor and non-motor features of Parkinson disease in mice through its antioxidant and anti-inflammatory effects. Hence, could be a potential phytotherapeutic adjunct in the management of Parkinson disease.
Collapse
Affiliation(s)
- Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos state, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos state, Nigeria.
| | - Oluwabusayo R Folarin
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Oyo state, Nigeria
| | - Farouk A Oladoja
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | | | - Ifunanya M Aniekwensi
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos state, Nigeria
| | - Afolabi Bisiriyu
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos state, Nigeria
| | - Nkem A Joseph-Iwebi
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos state, Nigeria
| | - Foluke O Adebanjo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics, and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos state, Nigeria
| |
Collapse
|
7
|
Zhao X, Hou T, Zhou H, Liu Z, Liu Y, Wang C, Guo Z, Yu D, Xu Q, Wang J, Liang X. Multi-effective components and their target mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. Fitoterapia 2023; 171:105712. [PMID: 37884227 DOI: 10.1016/j.fitote.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Insomnia is a common and refractory disease. Since more than 2000 years ago, people have been using Ziziphi Spinosae Semen (ZSS). However, there are lack of molecular mechanisms of sleep promotion effects of ZSS. The purpose of this study is to clarify the active ingredients in ZSS that are used to treat insomnia. Using a method called cellular label-free integrative pharmacology (CLIP), we established five insomnia-related target models, including serotonin (5HT2A and 5HT1A), melatonin (MT1), dopamine (D2) and epinephrine (β2) receptors. The one-dimensional (1D) fractions of ZSS extract were prepared on a RZC18 column and assayed on five models. Subsequently, the active fraction was further analyzed, fractionated and quantified using a two-dimensional (2D) liquid phase method coupled with a charged aerosol detector (CAD), This CAD-coupled 2D-LC method requires micro-fractions from the 1D separation and thus it greatly saves sample amounts and corresponding preparation time, and quickly conduct activity screening. The composition of the active 2D fractions was then determined using three-dimensional (3D) HPLC-MS, and molecular docking was separately carried out for the described compounds on the targets for activity prediction. Seven compounds were predicted to be active on 5HT2A, and two compounds on D2. We experimentally verified the prediction and found that vitexin exhibited D2 agonistic activity, and nuciferine exhibited 5HT2A antagonistic activity. This study revealed the effective components and their targets of ZSS in the treatment of insomnia, also highlighted the potential of the CLIP technique and bioactivity guided multi-dimensional HPLC-MS in molecular mechanism elucidation for traditional Chinese medicines.
Collapse
Affiliation(s)
- Xinwei Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziling Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongping Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|