1
|
Ong J, Sasaki K, Ferdousi F, Suresh M, Isoda H, Szele FG. Senescence accelerated mouse-prone 8: a model of neuroinflammation and aging with features of sporadic Alzheimer's disease. Stem Cells 2025; 43:sxae091. [PMID: 39813151 PMCID: PMC11816274 DOI: 10.1093/stmcls/sxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
The large majority of Alzheimer's disease (AD) cases are sporadic with unknown genetic causes. In contrast, only a small percentage of AD cases are familial, with known genetic causes. Paradoxically, there are only few validated mouse models of sporadic AD but many of familial AD. Senescence accelerated mouse-prone 8 (SAMP8) mice are a model of accelerated aging with features of sporadic AD. They exhibit a more complete suite of human AD-relevant pathologies than most familial models. SAMP8 brains are characterized by inflammation, glial activation, b-amyloid deposits, and hyperphosphorylated Tau. The excess amyloid deposits congregate around blood vessels leading to vascular impairment and leaky BBBs in these mice. SAMP8 mice also exhibit neuronal cell death, a feature not typically seen in models of familial AD. Additionally, adult hippocampal neurogenesis is decreased in SAMP8 mice and correspondingly, they have reduced cognitive ability. In line with this, hippocampal LTP is significantly compromised in SAMP8 mice. No model is perfect and SAMP8 mice are limited by the lack of clarity about their genomic differences from control Senescence Accelerated Mouse-Resistant 1 (SAMR1) mice although their transcriptomics changes are being revealed. To further complicate matters, multiple substrains of SAMP8 mice have emerged over the years, sometimes making comparisons of studies difficult. Despite these challenges, we argue that SAMP8 mice can be useful for studying AD-relevant symptoms and propose important experiments to strengthen this already useful model.
Collapse
Affiliation(s)
- Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Megalakshmi Suresh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| |
Collapse
|
2
|
Sakiyama H, Baba K, Kimura Y, Ogawa K, Nishiike U, Hayakawa H, Yoshida M, Aguirre C, Ikenaka K, Nagano S, Mochizuki H. Accelerated senescence exacerbates α-synucleinopathy in senescence-accelerated prone 8 mice via persistent neuroinflammation. Neurochem Int 2025; 182:105906. [PMID: 39586378 DOI: 10.1016/j.neuint.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Parkinson's disease (PD) is characterized by the formation of α-synuclein (α-syn) aggregates, which lead to dopaminergic neuronal degeneration. The incidence of PD increases with age, and senescence is considered to be a major risk factor for PD. In this study, we evaluated the effect of senescence on PD pathology using α-synuclein preformed fibrils (PFF) injection model in senescence-accelerated mice. We injected PFF into the substantia nigra (SN) of senescence-accelerated prone 8 (SAMP8) mice and senescence-accelerated resistant 1 (SAMR1) mice. At 24 weeks after injection of saline or PFF, we found that SAMP8 mice injected with PFF exhibited robust Lewy pathology and exacerbated degeneration of dopaminergic neurons in the SN compared to PFF-injected SAMR1 mice. We further observed an increase in the number of Iba1-positive cells in the brains of PFF-injected SAMP8 mice. RNA sequencing revealed that several genes related to neuroinflammation were upregulated in the brains of PFF-injected SAMP8 mice compared to SAMR1 mice. Inflammatory chemokine CC-chemokine ligand 21 (CCL21) was upregulated in PFF-injected SAMP8 mice and expressed in the glial cells of these mice. Our research indicates that accelerated senescence leads to persistent neuroinflammation, which plays an important role in the exacerbation of α-synucleinopathy.
Collapse
Affiliation(s)
- Hiroshi Sakiyama
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Ujiakira Nishiike
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Hideki Hayakawa
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Miki Yoshida
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Cesar Aguirre
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University, Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
3
|
Liang J, Zhu Y, Liu S, Kuang B, Tian Z, Zhang L, Yang S, Lin M, Chen N, Liu X, Ai Q, Yang Y. Progress of Exosomal MicroRNAs and Traditional Chinese Medicine Monomers in Neurodegenerative Diseases. Phytother Res 2024; 38:5323-5349. [PMID: 39225243 DOI: 10.1002/ptr.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.
Collapse
Affiliation(s)
- Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuchen Zhu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Boyu Kuang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Xiao-Hang Q, Si-Yue C, Hui-Dong T. Multi-strain probiotics ameliorate Alzheimer's-like cognitive impairment and pathological changes through the AKT/GSK-3β pathway in senescence-accelerated mouse prone 8 mice. Brain Behav Immun 2024; 119:14-27. [PMID: 38548184 DOI: 10.1016/j.bbi.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent type of dementia, still lacks disease-modifying treatment strategies. Recent evidence indicates that maintaining gut microbiota homeostasis plays a crucial role in AD. Targeted regulation of gut microbiota, including probiotics, is anticipated to emerge as a potential approach for AD treatment. However, the efficacy and mechanism of multi-strain probiotics treatment in AD remain unclear. METHODS In this study, 6-month-old senescence-accelerated-mouse-prone 8 (SAMP8) and senescence-accelerated-mouse-resistant 1 (SAMR1) were utilized. The SAMP8 mice were treated with probiotic-2 (P2, a probiotic mixture of Bifidobacterium lactis and Lactobacillus rhamnosus) and probiotic-3 (P3, a probiotic mixture of Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus rhamnosus) (1 × 109 colony-forming units) once daily for 8 weeks. Morris water maze (MWM) and novel object recognition (NOR) tests were employed to assess the memory ability. 16S sequencing was applied to determine the composition of gut microbiota, along with detecting serum short-chain fatty acids (SCFAs) concentrations. Neural injury, Aβ and Tau pathology, and neuroinflammation level were assessed through western blot and immunofluorescence. Finally, potential molecular mechanisms was explored through transcriptomic analysis and western blotting. RESULTS The MWM and NOR test results indicated a significant improvement in the cognitive level of SAMP8 mice treated with P2 and P3 probiotics compared to the SAMP8 control group. Fecal 16S sequencing revealed an evident difference in the α diversity index between SAMP8 and SAMR1 mice, while the α diversity of SAMP8 mice remained unchanged after P2 and P3 treatment. At the genus level, the relative abundance of ten bacteria differed significantly among the four groups. Multi-strain probiotics treatment could modulate serum SCFAs (valeric acid, isovaleric acid, and hexanoic acid) concentration. Neuropathological results demonstrated a substantial decrease in neural injury, Aβ and Tau pathology and neuroinflammation in the brain of SAMP8 mice treated with P3 and P2. Transcriptomic analysis identified the chemokine signaling pathway as the most significantly enriched signaling pathway between SAMP8 and SAMR1 mice. Western blot test indicated a significant change in the phosphorylation level of downstream AKT/GSK-3β between the SAMP8 and SAMR1 groups, which could be reversed through P2 and P3 treatment. CONCLUSIONS Multi-strain probiotics treatment can ameliorate cognitive impairment and pathological change in SAMP8 mice, including neural damage, Aβ and Tau pathology, and neuroinflammation. This effect is associated with the regulation of the phosphorylation of the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Qian Xiao-Hang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Si-Yue
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tang Hui-Dong
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Sharma M, Pal P, Gupta SK. Advances in Alzheimer's disease: A multifaceted review of potential therapies and diagnostic techniques for early detection. Neurochem Int 2024; 177:105761. [PMID: 38723902 DOI: 10.1016/j.neuint.2024.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most formidable neurological disorders, affecting millions globally. This review provides a holistic overview of the therapeutic strategies, both conventional and novel, aimed at mitigating the impact of AD. Initially, we delve into the conventional approach, emphasizing the role of Acetylcholinesterase (AChE) inhibition, which has been a cornerstone in AD management. As our understanding of AD evolves, several novel potential approaches emerge. We discuss the promising roles of Butyrylcholinesterase (BChE) inhibition, Tau Protein inhibitors, COX-2 inhibition, PPAR-γ agonism, and FAHH inhibition, among others. The potential of the endocannabinoids (eCB) system, cholesterol-lowering drugs, metal chelators, and MMPs inhibitors are also explored, culminating in the exploration of the pivotal role of microRNA in AD progression. Parallel to these therapeutic insights, we shed light on the novel tools and methodologies revolutionizing AD research. From the quantitative analysis of gene expression by qRTPCR to the evaluation of mitochondrial function using induced pluripotent stem cells (iPSCs), the advances in diagnostic and research tools offer renewed hope. Moreover, we explore the current landscape of clinical trials, highlighting the leading drug interventions and their respective stages of development. This comprehensive review concludes with a look into the future perspectives, capturing the potential breakthroughs and innovations on the horizon. Through a synthesis of current knowledge and emerging research, this article aims to provide a consolidated resource for clinicians, researchers, and academicians in the realm of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
6
|
Li J, Hao Y, Wang S, Li W, Yue S, Duan X, Yang Y, Li B. Yuanzhi powder facilitated Aβ clearance in APP/PS1 mice: Target to the drainage of glymphatic system and meningeal lymphatic vessels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117195. [PMID: 37717839 DOI: 10.1016/j.jep.2023.117195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuanzhi Powder (YZP) is a classical Chinese medicine prescription, which is suitable for the treatment of dementia by "dispelling phlegm and opening orifice". The therapeutic efficacy of YZP on Alzheimer's disease (AD) has been previously reported in our work. However, it remains unclear whether the neuroprotective effect of YZP is linked to β-amyloid(Aβ) clearance through cerebral lymphatic drainage. AIM OF THE STUDY The aim was to determine the protective efficacy of YZP against AD and investigate the potential mechanism for eliminating excessive Aβ deposition. MATERIALS AND METHODS APP/PS1 mice were divided into four groups of 8 mice each: APP/PS1 group, DONE group, L-YZP group, and H-YZP group. Additionally, 8 wild-type littermates were assigned to the control group (WT group). After 8 weeks of consecutive intragastric administration, behavioral tests, including the open field test, novel object recognition test and Morris Water Maze test, were employed to assess the cognitive abilities of all groups of mice. Nissl staining, immunohistochemistry, and western blotting were utilized to evaluate clearance of excessive Aβ deposition and pathological changes. Furthermore, immunofluorescence was applied to visualize the drainage of the cerebral lymphatic system after fluorescent tracer injection in the cisterna magna. RESULTS The administration of YZP significantly attenuated cognitive deficits, cleared excessive Aβ deposition, and improved pathological damage in APP/PS1 mice. Furthermore, YZP effectively enhanced glymphatic system drainage by restoring AQP4 polarization and inhibiting reactive astrogliosis. Additionally, YZP facilitated the drainage of meningeal lymphatic vessels (MLVs) by augmenting their diameter and coverage. Lastly, YZP promoted the elimination of Aβ from the brain to deep cervical lymph nodes. CONCLUSIONS The administration of YZP may ameliorate the cognitive deficits and pathological damage in APP/PS1 mice by effectively clearing excessive Aβ deposition. The underlying mechanisms potentially involve Aβ clearance through the cerebral lymphatic system, which includes the glymphatic system and MLVs.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaofeng Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Yue
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueqing Duan
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Yang
- Department of Scientific Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Zhang Y, Tian J, Ni J, Wei M, Li T, Shi J. Polygala tenuifolia and Acorus tatarinowii in the treatment of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1268000. [PMID: 38283842 PMCID: PMC10815298 DOI: 10.3389/fphar.2023.1268000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Background: The complexity of Chinese medicine treatment for Alzheimer's disease (AD) utilizing a multi-herb therapy makes the evidence in current studies insufficient. Herb pairs are the most fundamental form of multi-herb formulae. Among the Chinese herbal formulas for AD treatment, Polygala tenuifolia (PT) and Acorus tatarinowii (AT) appeared as the most commonly used herbal pairs in combination. Objective: The aim of this study is to evaluate the clinical efficacy and safety of the combination of PT and AT in the treatment of AD. Methods: We systematically searched and screened randomized controlled trials of pairing PT and AT for the treatment of AD patients in eight databases with a search deadline of June 26, 2023. Authors, year of publication, title, and basic information such as subject characteristics (age, sex, and race), course of disease, control interventions, dose, and treatment duration were extracted from the screened studies. Primary outcomes assessed included mini-mental state examination (MMSE), activities of daily living (ADL), and AD assessment scale-cognitive subscale (ADAS-cog), while secondary outcomes included efficiency and adverse events. The quality of the included studies was assessed using the Cochrane risk of bias tool. The mean difference with 95% confidence intervals (MD [95% CI]) and risk ratio (RR) was selected as the effect size, and the data were analyzed and evaluated using RevMan 5.4 and Stata 16. Results: A total of sixteen eligible and relevant studies involving 1103 AD participants were included. The combination of PT and AT plus conventional drugs was superior to single conventional drugs in MMSE [MD = 2.57, 95%CI: (1.44, 3.69); p < 0.00001; I 2 = 86%], ADL [MD = -3.19, 95%CI: (-4.29, -2.09); p < 0.00001; I 2 = 0%], and ADAS-cog scores [MD = -2.09, 95%CI: (-3.07, -1.10); p < 0.0001; I 2 = 0%]. The combination of PT and AT plus conventional drugs had a significantly more favorable benefit in clinical effectiveness [RR = 1.27, 95%CI: (1.12, 1.44); p = 0.0002; I 2 = 0%]. Adverse events were not increased with the combination of PT and AT plus conventional drugs compared to conventional drugs [RR = 0.65, 95%CI: (0.35, 1.19); p = 0.16; I 2 = 0%]. The experimental group treated with the combination of PT and AT alone for AD was comparable in MMSE, ADL, and ADAS-cog scores compared with the control group treated with single conventional drugs. Conclusion: Compared to single conventional drugs, the combination of PT and AT may be used as an alternative therapy to improve global cognition and functioning in AD, and the combination of PT and AT as adjunctive therapy appears to produce a better therapeutic response to AD in terms of efficacy without increasing the risk of adverse events. However, the very low to low quality of available evidence limits confidence in the findings. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023444156.
Collapse
Affiliation(s)
- Yuchen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingnian Ni
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqing Wei
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Choi PG, Park SH, Jeong HY, Kim HS, Hahm JH, Seo HD, Ahn J, Jung CH. Geniposide attenuates muscle atrophy via the inhibition of FoxO1 in senescence-accelerated mouse prone-8. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155281. [PMID: 38103316 DOI: 10.1016/j.phymed.2023.155281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE To determine whether GP improves the pathology of AD and sarcopenia. METHODS AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.
Collapse
Affiliation(s)
- Pyeong Geun Choi
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - So-Hyun Park
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hang Yeon Jeong
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hee Soo Kim
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, Republic of Korea; Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|