1
|
Tian M, Ma X, Nie L, Zang H. Screening of Bioactive Compounds and Deep Learning-driven Quality Control of Angong Niuhuang Pills. JOURNAL OF ETHNOPHARMACOLOGY 2025:120095. [PMID: 40490229 DOI: 10.1016/j.jep.2025.120095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/30/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angong Niuhuang Pills (AGNHP), a famous Chinese medicine compound preparation, is widely used to treat stroke and other brain disorders. However, owing to the complexity of herbal components and diversity of production processes, quality control is challenging. AIM OF THE STUDY This study aimed to explore deep learning-driven quality control methods to accurately and efficiently determine the content of key active compounds in AGNHP and to realize large-scale quality control and yield monitoring. METHOD In this study, AGNHP was used to screen and validate active compounds using liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology and partial least squares (PLS) analysis. The anti-inflammatory activity was validated in zebrafish and cellular models, and quality control was achieved using near-infrared spectroscopy (NIR) and the deep learning model. This study aimed to establish a comprehensive quality-control system for AGNHP. RESULT Seven key active compounds, including taurocholic acid, and chenodeoxycholic acid, were screened using LC-MS analysis and network pharmacological prediction. These compounds showed significant anti-inflammatory activity in in vitro and in vivo models. BiGRU-MAR model was able to accurately predict the levels of these compounds, which were in high agreement with the actual measured values, demonstrating its effectiveness in AGNHP quality control. CONCLUSION This study established a complete quality control system for the AGNHP and promoted its scientific and standardized quality analysis and control. The results of this study have laid a solid scientific foundation for large-scale quality control of pCms and have important theoretical and applied values.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266200, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Xiaobo Ma
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266200, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266200, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266200, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Luo J, Shen Y, Liu K, Hong LL, Yang M, Li N, Deng H, Lin HW, Zhou Y. Biosynthesis of a N-Acetylated Tricyclic Carbazole with Antithrombotic Activity. JOURNAL OF NATURAL PRODUCTS 2025; 88:1172-1180. [PMID: 40262092 DOI: 10.1021/acs.jnatprod.5c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Tricyclic carbazoles are significant pharmacophores. Herein, heterologous expression of the carbazole-3,4-quinone (1) biosynthetic pathway in the chassis host Streptomyces albus J1074 yielded a previously chemosynthesized orthoquinone carbazole (2) and three new N-acetylated carbazoles (3-5). Their structures were established by a combination of HR-ESI-MS, NMR, and X-ray crystallographic analysis. Compound 2, the deaminated precursor of 4 and 5, was enzymatically synthesized, indicating the substrate tolerance of the key enzymes in the bacterial tricyclic-carbazole biosynthetic pathway. Mutagenetic analysis revealed an arylamine N-acetyltransferase homologous gene required for the production of compounds 3-5. Bioactivity analysis using the zebrafish model demonstrated that compound 5 has significant antithrombotic activity, potentially by downregulating the genes involved in the platelet activation and coagulation cascade. These findings expand the natural strategies for structural diversification of the tricyclic carbazole alkaloids.
Collapse
Affiliation(s)
- Jiaming Luo
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 People's Republic of China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 People's Republic of China
| | - Ke Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103 People's Republic of China
| | - Li Li Hong
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 People's Republic of China
| | - Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 People's Republic of China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103 People's Republic of China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE U.K
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 People's Republic of China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 People's Republic of China
| |
Collapse
|
3
|
Zhan M, Zheng X, Gao J, Shi S, Song W, Yao M, Sun L, Fan X, Zhang Y, Liu J. Qilong capsule regulates microglial function and inhibits platelet activation after multiple cerebral infarctions by regulating the P2Y 12/AC/cAMP signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119586. [PMID: 40054638 DOI: 10.1016/j.jep.2025.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multiple cerebral infarctions (MCIs) represent a common type of ischaemic stroke that affects or even endangers a patient's life. Qilong capsule (QLC), a Chinese patent medicine made from Buyang Huanwu Decoction (BYHWD) is suitable for treating the sequelae of ischaemic stroke, such as multi-infarct dementia (MID). However, its biological mechanism has not been fully explored. AMI OF THE STUDY The aim of this study was to explore the mechanism of QLC in treating MCI and its sequelae. METHODS Male SD rats aged 7-8 weeks and weighing 210-230 g were used as an MCI model, and QLC was used as interventions. The neurobehavioural effects of QLC on MCI model rats were evaluated by observing body weight, neurological function score, and forelimb grip and water maze test results. The effects of QLC on neurons and microglia were observed via haematoxylin‒eosin (HE) staining, silver staining, transmission electron microscopy and positron emission tomography/computed tomography (PET/CT). The effects of QLC on platelets were observed via the platelet aggregation rate and flow cytometry (FCM). Finally, the mechanism of QLC was verified via ELISA, immunofluorescence staining and Western blotting. RESULTS These experiments showed that QLC improves neurobehavioural measures, forelimb grip strength, and spatial memory after MCI by ameliorating brain tissue and neuronal damage. QLC also effectively inhibited the inflammatory response after MCI. We also found that QLC can decrease microglia activation and reduce the expression of translocator protein 18 kDa (TSPO). QLC can improve platelet aggregation and reduce the expression of CD62p and CD61, indicating that QLC has a significant anti-platelet aggregation effect. At the molecular level, we found that QLC affects the content of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), reduces the expression of recombinant purinergic receptor P2Y, G protein coupled 12 (P2Y12) in microglia, and regulates the P2Y12/adenylate cyclase (AC)/cAMP signalling pathway. CONCLUSIONS QLC can ameliorate neuronal necrosis and MID induced by MCI and has an antiplatelet aggregation effect in rats. QLC may treat MID by regulating P2Y12/AC/cAMP.
Collapse
Affiliation(s)
- Min Zhan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China; Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiaoyu Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China
| | - Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China
| | - Shengnan Shi
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China
| | - Mingjiang Yao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China
| | - Linjuan Sun
- Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China.
| | - Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China.
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, 100091, China.
| |
Collapse
|
4
|
Pretorius L, Ross KS, Smith C. Multi-targeted action of rooibos may protect against ischaemic stroke-induced neurological deficit and endothelial dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118822. [PMID: 39260709 DOI: 10.1016/j.jep.2024.118822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigenous use communities in the Western Cape (South Africa) where Aspalathus linearis (Brum.f) R.Dahlgren - or rooibos - grows naturally, has a long history of using rooibos for medicinal purposes. Apart from its well-known antioxidant effect, the Cederberg community in particular has been using rooibos as a treatment for high blood pressure. Given the detrimental effects of high blood pressure on endothelial cells, rooibos may either directly or indirectly affect vascular health. This, together with more recent reports of neuroprotective effects, may position rooibos as complementary medicine in related vascular conditions such as ischaemic stroke. AIMS OF THE STUDY The study aimed to evaluate the potential benefit of acute administration of unfermented rooibos, on vascular health in a larval zebrafish model of stroke. MATERIALS AND METHODS Stroke was induced via 24-h ponatinib exposure, in the presence or absence of an aqueous solution of an ethanolic extract of unfermented Rooibos (GreenOxithin™). The magnitude of stroke was assessed by monitoring larval locomotion and thrombus formation. In terms of specific mechanisms probed, changes in redox status (MDA and TEAC), neurological markers (TH and NeuroD1) and endothelial health (tight/adhesion junction protein expression) were assessed. RESULTS Rooibos treatment limited thrombus formation and prevented stroke-induced deficits on larval motility. In terms of redox status, rooibos treatment prevented lipid peroxidation 3 days after initial stroke induction, reducing the need for significant upregulation of endogenous antioxidant mechanisms. Stroke-induced changes in neuronal (NeuroD1 and TH) protein expression were normalized in the presence of rooibos, suggesting a neuroprotective role. In terms of tight junction proteins, stroke-related decreases in ZO-1 expression were again prevented by rooibos treatment. In addition, rooibos treatment may beneficially modulate levels of claudin-5 and VE-cadherin, to indirectly limit stroke-associated vascular dysfunction. CONCLUSIONS Taken together, activity data and physiological assessments suggest that unfermented rooibos may indeed have benefit in the context of stroke, via action at multiple targets. Thus, current data further our understanding of the mechanisms of actions of rooibos and warrant future research to confirm sufficient bioavailability of rooibos in target tissues, in mammalian systems.
Collapse
Affiliation(s)
- L Pretorius
- Experimental Medicine Research Group, Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - K S Ross
- Experimental Medicine Research Group, Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - C Smith
- Experimental Medicine Research Group, Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
5
|
Nayaka NMDMW, Adnyana IK, Anggadiredja K, Wibowo I. Drug screening for ischemic stroke using larvae and adult zebrafish model: a review. Lab Anim Res 2025; 41:1. [PMID: 39743611 DOI: 10.1186/s42826-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) is the most recorded case of stroke that is caused by decreased blood flow to the brain. Nowadays, therapeutical agents for IS are limited and they have not shown maximum clinical results. Therefore, the exploration of new candidates for IS treatment continues to be done. Zebrafish as one of the animal models has its advantages and currently is being developed to be incorporated into the drug discovery pipeline of IS. This review explores the latest applications of the zebrafish model in screening potential therapeutic agents for IS. Key factors related to the experimental design such as developmental stage and strain, routes of drug administration, induction methods, and experimental parameters are also elaborated. Finally, this review offers future recommendations for the use of zebrafish in the pre-clinical study of IS. This review is beneficial as a reference for establishing drug screening protocols using the zebrafish IS model.
Collapse
Affiliation(s)
- Ni Made Dwi Mara Widyani Nayaka
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
- Department of Natural Medicine, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Jl. Kamboja 11A, 80236, Bali, Indonesia
| | - I Ketut Adnyana
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
| | - Kusnandar Anggadiredja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
| | - Indra Wibowo
- Physiology, Animal Development, and Biomedical Science Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia.
| |
Collapse
|
6
|
Liu Z, Wang M, Ding X, Tian J, Sun D, Gao X, Jin C, Peng D, Gui S, Wang X. Exploration the effective components of Gastrodia elata in improving cerebral ischemia reperfusion injury based on "Spectrum-effect" correlation and zebrafish verification experiment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156211. [PMID: 39561661 DOI: 10.1016/j.phymed.2024.156211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Gastrodia elata (GE) has been widely used in clinical practice for many years with the functions of relieving stroke, suppressing liver Yang, dispelling wind and clearing collaterals. Our group's previous experimental studies have proved that GE has therapeutic effect on cerebral ischemia reperfusion injury (CIRI) (Ding et al., 2022). However, the active components of GE in treating CIRI remain unclear and require further research. PURPOSE The purpose of this paper was to explore the potential effective components of GE improving CIRI based on the "Spectrum-effect" correlation. Zebrafish model was used for verification in vivo experimental. MATERIALS AND METHODS First, the absorption components and metabolites of GE in rat serum were identified using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Second, pharmacodynamic indexes were determined by ELISA kit method, and the effect-time curve of each pharmacodynamic indexes was established. The potential compounds were screened using the statistical method of grey correlation between pharmacodynamic indicator and component response. Finally, the zebrafish CIRI model was successfully established, and the in vivo effect of the active components of GE was verified intuitively. RESULTS 45 chemical components were detected in GE. A total of 87 active components in serum of GE were identified including 25 prototype components and 62 metabolites. GE can improve CIRI by regulating the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), MDA levels and SOD levels. It was found that p‑hydroxy benzaldehyde (PHB), p-hydroxybenzyl alcohol (PHBA) and gastrodin (GA) of GE were the possibly main active components by grey correlation statistics. The in vivo experiments of zebrafish model showed that PHB, PHBA, and GA have the ability to ameliorate cerebral thrombosis by regulation of oxidative stress and apoptosis. CONCLUSIONS The potential active components of GE on CIRI were initially excavated using UHPLC-Q-TOF-MS/MS, pharmacodynamics, and in vivo experiments of zebrafish model. It makes up for the disadvantages of separate research on chemical components and pharmacodynamics, and reflects the material basis of pharmacodynamics more objectively. It has provided theoretical basis for further quality evaluation and scientific foundation for rational drug using of GE in clinical.
Collapse
Affiliation(s)
- Zilu Liu
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Mengting Wang
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Ximeng Ding
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Jing Tian
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi'an 710069, PR China
| | - Dan Sun
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi'an 710069, PR China
| | - Xinrui Gao
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Chuanshan Jin
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou, PR China
| | - Daiyin Peng
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Resources Protection and Development Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, PR China
| | - Shuangying Gui
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; Resources Protection and Development Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, PR China.
| | - Xiaoli Wang
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; Resources Protection and Development Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou, PR China.
| |
Collapse
|
7
|
Tian M, Ma X, Lu Q, Xue G, Li L, Wu A, Zang H, Nie L. Study on the mechanism of ischemic stroke treatment based on network pharmacology and Raman spectroscopy in the larval zebrafish model, Calculus Bovis as a case. Int Immunopharmacol 2024; 141:112914. [PMID: 39181017 DOI: 10.1016/j.intimp.2024.112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Calculus Bovis (C. bovis) is a precious traditional Chinese medicine of animal origin, and it is one of the traditional medicines for treating cerebral inflammatory diseases such as stroke. However, the pharmacological action of C. bovis on ischemic stroke (IS) and its mechanism are still unclear. The purpose of this study was to investigate the potential mechanism to treat IS. Chemical constituents of different varieties of C. bovis were analyzed and confirmed by HPLC-MS/MS technique. We constructed a component and corresponding target network and drug-disease target protein-protein interaction (PPI) network. GO and KEGG enrichment analysis were performed. The molecular docking of the main compound with the target protein. Subsequently, the potential mechanism of therapy for IS was verified in vivo by zebrafish model. We introduced Raman spectroscopy to detect changes in the biochemical composition of zebrafish. 13 active chemical constituents and 129 potential targets were selected. 122 KEGG signaling pathways were obtained. The binding energy of the main compounds is less than -4.5. The results of animal experiments showed that C. bovis could significantly improve Ponatinib-induced IS, decrease the aggregation degree of brain macrophages, reduce the number of macrophage migrations, and significantly increase the expression level of NR3C1. Raman information indicated that the biochemical composition in the brain of the Ponatinib-induced group shifted to the control group. The mechanism may be related to anti-inflammatory process and regulation of lipid metabolism. This study demonstrates that Raman spectroscopy has great potential as a drug evaluation tool in living larval zebrafish.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Xiaobo Ma
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Qingqing Lu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Gao Xue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China.
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
He X, Wu M, Chen L, Liu M, Hu X, Meng Y, Yue H, Yang X, Zheng P, Dai Y. APMCG-1 attenuates ischemic stroke injury by reducing oxidative stress and apoptosis and promoting angiogenesis via activating PI3K/AKT pathway. Biomed Pharmacother 2024; 180:117506. [PMID: 39368213 DOI: 10.1016/j.biopha.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS. Moreover, despite their millennial legacy of IS remediation, natural remedies such as ginseng incur high production costs. The novel glycopeptide APMCG-1, extracted from mountain-cultivated ginseng dregs in our previous study, is a potent therapeutic candidate for IS. This study investigated APMCG-1's remedial mechanisms against IS injury using an H2O2-induced oxidative stress paradigm in human umbilical vein endothelial cells (HUVECs) emulating ischemic endothelial cells, in a ponatinib-induced zebrafish IS model, and in rat middle cerebral artery occlusion (MCAO) prototypes. Cellular assays confirmed the proficiency of APMCG-1 in preventing oxidative stress and cell death, fostering regeneration, and facilitating neovascularization within the H2O2-stressed HUVECs framework. Moreover, APMCG-1 augmented hemodynamic velocity, oxidative stress mitigation, apoptosis reduction, and motor enhancement in a zebrafish model of IS. In MCAO rats, APMCG-1 ameliorated neurological deficits and cerebral injury, as evidenced by increased neurological scores and diminished infarct dimensions. In cells and animal models, APMCG-1 activated the PI3K/AKT signaling pathway, modulating factors such as Nrf2, Bcl-2, Caspase 3, eNOS, and VEGFA, thereby ameliorating cellular oxidative distress and catalyzing angiogenesis. Collectively, these results demonstrate the potential protective effects of APMCG-1 in IS pharmacotherapy and its prospective utility as an herbal-derived IS treatment modality.
Collapse
Affiliation(s)
- Xingyue He
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingdian Wu
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Likun Chen
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun Liu
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Xuan Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoshan Yang
- Guangzhou Baiyun Meiwan Testing Co., Ltd, Guangzhou 510403, China
| | - Peng Zheng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
9
|
Wang M, Li L, Tang S, Liu J, Liu S, Ye J, Ding G, Sun G. Qilong capsule prevents myocardial ischemia/reperfusion injury by inhibiting platelet activation via the platelet CD36 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118211. [PMID: 38636580 DOI: 10.1016/j.jep.2024.118211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of β-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.
Collapse
Affiliation(s)
- Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Lingxu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Shuang Tang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Jianxun Liu
- Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China.
| | - Shusen Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Gang Ding
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Krajcsir B, Pócsi M, Fejes Z, Nagy B, Kappelmayer J, Beke Debreceni I. Ponatinib Induces a Procoagulant Phenotype in Human Coronary Endothelial Cells via Inducing Apoptosis. Pharmaceutics 2024; 16:559. [PMID: 38675220 PMCID: PMC11055157 DOI: 10.3390/pharmaceutics16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) are effective drugs in the treatment of patients with chronic myeloid leukemia. However, based on clinical studies, ponatinib was associated with the development of thrombotic complications. Since endothelial cells (ECs) regulate blood coagulation, their abnormal phenotype may play a role in the development of thrombotic events. We here aimed to investigate the effect of ponatinib on the procoagulant activity of cultured endothelial cells in vitro. Human coronary artery endothelial cells (HCAECs) were incubated with 50, 150, and 1000 nM of ponatinib. Subsequently, phosphatidylserine (PS) exposure and endothelial microvesicles (EMVs) were measured by flow cytometry. In addition, EC- and EMV-dependent thrombin generation was analyzed. To investigate pro-apoptotic effects of ponatinib, the level of Bax and Bcl-xL proteins were studied using Western blot and F3, THBD, and VCAM1 mRNAs were quantified by qPCR. Therapeutic concentrations of ponatinib significantly increased PS expression on ECs and the amount of EMVs which significantly shortened the time parameters of thrombin generation. In addition, these changes were associated with an increased ratio of Bax and Bcl-xL proteins in the presence of the decreased THBD mRNA level. Overall, ponatinib enhances the procoagulant activity of ECs via inducing apoptosis, which may contribute to thrombotic events.
Collapse
Affiliation(s)
- Bálint Krajcsir
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
- Laki Kálmán Doctoral School, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| |
Collapse
|
11
|
Lin S, Ma H, Zhang S, Fan W, Shen C, Chen J, Jin M, Li K, He Q. The combination of paeonol, diosmetin-7- O- β- D-glucopyranoside, and 5-hydroxymethylfurfural from Trichosanthis pericarpium alleviates arachidonic acid-induced thrombosis in a zebrafish model. Front Pharmacol 2024; 15:1332468. [PMID: 38487165 PMCID: PMC10937350 DOI: 10.3389/fphar.2024.1332468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Trichosanthis fruit (TF) is a classic medicinal material obtained from Shandong, China. The peel of this fruit (Trichosanthis pericarpium, TP) is known to exert anti-thrombotic effects. However, the anti-thrombotic active components and mechanisms of TP have yet to be fully elucidated. Combined with zebrafish models and high-performance liquid chromatography (HPLC), this study evaluated the endogenous anti-thrombotic effects with the combination of three compounds from TP. First, we used HPLC to investigate the components in the water extract of TP. Next, we used the zebrafish model to investigate the anti-thrombotic activity of the three compound combinations by evaluating a range of indicators. Finally, the expression of related genes was detected by real-time quantitative polymerase chain reaction (qPCR). HPLC detected a total of eight components in TP water extract, with high levels of paeonol (Pae), diosmetin-7-O-β-D-glucopyranoside (diosmetin-7-O-glucoside), and 5-hydroxymethylfurfural (5-HMF). The most significant anti-thrombotic activity was detected when the Pae: diosmetin-7-O-glucoside:5-HMF ratio was 4:3:3. qPCR analysis revealed that the abnormal expression levels of f2, fga, fgb, vwf, ptgs1, and tbxas1 induced by arachidonic acid (AA) were improved. The combination of Pae, diosmetin-7-O-glucoside, and 5-HMF may alleviate AA-induced thrombosis by inhibiting the inflammatory reaction, coagulation cascade reaction, and arachidonic acid metabolism pathways.
Collapse
Affiliation(s)
- Shenghua Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Honglin Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Fan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiayu Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|