1
|
Ergul Erkec O, Huyut Z, Acikgoz E, Huyut MT. Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model. Arch Physiol Biochem 2025; 131:274-284. [PMID: 39324977 DOI: 10.1080/13813455.2024.2407551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
2
|
Cai Y, Wang X, Chen X, Liu S, Cheng L, Kang Y, Lin F. Lactobacillus casei Zhang prevents hippocampal atrophy and cognitive impairment in rats with type 2 diabetes by regulating blood glucose levels. Brain Res 2025; 1850:149407. [PMID: 39706238 DOI: 10.1016/j.brainres.2024.149407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE Lactobacillus casei Zhang (LCZ) has health benefits, such as the ability to improve blood glucose levels in individuals with type 2 diabetes mellitus (T2DM). However, little is known about the effects of LCZ on brain structural plasticity and cognitive function in T2DM. The aims of this study were to determine whether LCZ can prevent and alleviate brain damage and memory impairment in T2DM, and to understand the mechanisms underlying the effects of LCZ in T2DM. METHODS Forty-one male Sprague-Dawley rats were divided into the saline control (CON, n = 14), T2DM (n = 14) and T2DM + LCZ (n = 13) groups. Magnetic resonance imaging (MRI) was used to evaluate alterations in brain structure among these three groups. The novel object recognition and Y-maze tests were conductedto assess cognitive function. Histological and immunohistochemical analysis, including Nissl staining, Golgi-Cox staining and glial fibrillary acidic protein immunostaining, were performed to explore the pathophysiological mechanisms underlying brain structural changes. RESULTS T2DM rats presented hyperglycemia, cognitive decline, hippocampal atrophy, and damage to hippocampal neurons and astrocytes. Compared with those in the T2DM groups, rats in the T2DM + LCZ group presented lower blood glucose levels, better cognitive function, a larger hippocampal volume, and more normal hippocampal neurons and astrocytes. There was no significant difference in these metrics between rats in the T2DM + LCZ and CON groups. CONCLUSION Hyperglycemia-induced damage to hippocampal neurons and astrocytes may lead to hippocampal atrophy and cognitive dysfunction in T2DM. LCZ can effectively prevent this damage by regulating blood glucose levels, preventing brain atrophy and cognitive impairment in T2DM rats. These findings provide a scientific basis for the clinical application of LCZ.
Collapse
Affiliation(s)
- Yue Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijie Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Cheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Kang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang Y, Ortiz R, Chang A, Nasseef T, Rubalcaba N, Munson C, Ghaw A, Balaji S, Kwon Y, Athreya D, Kedharnath S, Kulkarni PP, Ferris CF. Following changes in brain structure and function with multimodal MRI in a year-long prospective study on the development of Type 2 diabetes. FRONTIERS IN RADIOLOGY 2025; 5:1510850. [PMID: 40018732 PMCID: PMC11865244 DOI: 10.3389/fradi.2025.1510850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Aims To follow disease progression in a rat model of Type 2 diabetes using multimodal MRI to assess changes in brain structure and function. Material and methods Female rats (n = 20) were fed a high fat/high fructose diet or lab chow starting at 90 days of age. Diet fed rats were given streptozotocin to compromise pancreatic beta cells, while chow fed controls received vehicle. At intervals of 3, 6, 9, and 12 months, rats were tested for changes in behavior and sensitivity to pain. Brain structure and function were assessed using voxel based morphometry, diffusion weighted imaging and functional connectivity. Results Diet fed rats presented with elevated plasma glucose levels as early as 3 months and a significant gain in weight by 6 months as compared to controls. There were no significant changes in cognitive or motor behavior over the yearlong study but there was a significant increase in sensitivity to peripheral pain in diet fed rats. There were region specific decreases in brain volume e.g., basal ganglia, thalamus and brainstem in diet fed rats. These same regions showed elevated measures of water diffusivity evidence of putative vasogenic edema. By 6 months, widespread hyperconnectivity was observed across multiple brain regions. By 12 months, only the cerebellum and hippocampus showed increased connectivity, while the hypothalamus showed decreased connectivity in diet fed rats. Conclusions Noninvasive multimodal MRI identified site specific changes in brain structure and function in a yearlong longitudinal study of Type 2 diabetes in rats. The identified diabetic-induced neuropathological sites may serve as biomarkers for evaluating the efficacy of novel therapeutics.
Collapse
Affiliation(s)
- Yingjie Wang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Taufiq Nasseef
- Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi
| | - Natalia Rubalcaba
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Chandler Munson
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Ashley Ghaw
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Shreyas Balaji
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Yeani Kwon
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Deepti Athreya
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Shruti Kedharnath
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen P. Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
4
|
Aydin S, Tekinalp SG, Tuzcu B, Cam F, Sevik MO, Tatar E, Kalaskar D, Cam ME. The role of AMP-activated protein kinase activators on energy balance and cellular metabolism in type 2 diabetes mellitus. OBESITY MEDICINE 2025; 53:100577. [DOI: 10.1016/j.obmed.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Han YY, Li K, Hu JY, Wu JC, Li X, Liu DX, Li CH. Gender Differences in Dendritic Damage, Gut Microbiota Dysbiosis, and Cognitive Impairment During Aging Processes. CNS Neurosci Ther 2024; 30:e70164. [PMID: 39723486 DOI: 10.1111/cns.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 10/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Cognitive impairment is a common and feared characteristic of aging processes, and one key mechanism of cognition is hippocampal synaptic structure. Previous studies have reported that gut microbiota dysbiosis occurred in neurodegenerative diseases and other brain disorders with cognitive impairment. However, it is not clear how gender differences affect cognitive impairment in aging processes and whether they affect synaptic structure and gut microbiota. Here, we studied the gender differences in cognitive ability, dendritic morphology, and gut microbiota of adult, middle-, and old-aged rats. METHODS The cognitive ability of rats using was assessed by the Y-maze SAB test, the light/dark discrimination test, and the MWM test. Dendritic morphology was investegated by Golgi staining. Microbiota composition, diversity and richness were analyzed by 16S rRNA gene sequencing. RESULTS The results showed that the cognitive ability of old-aged rats was decreased than adult and middle-aged rats in the spontaneous alternation behavior test, the light/dark discrimination test in Y-maze, and the MWM test; males have better cognitive ability than the females for middle-aged rats. The neuronal dendritic structures of CA1, CA3, and DG regions of the hippocampus were damaged to different degrees during aging, and the spine loss of females was more than that of males in CA1 and CA3 of middle-aged rats. In addition, the microbial diversity of gut microbiota was significantly decreased in old-aged male rats; the distribution and composition of microbiota communities were different between male and female rats at different ages. CONCLUSION These findings revealed that cognitive impairment in aged rats might result from dendritic damage in the hippocampus and gut microbiota dysbiosis, which provides direct evidence that gender differences in dendritic damage and gut microbiota dysbiosis might associate with cognitive impairment in naturally aged rats.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kang Li
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jing-Yu Hu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ji-Chao Wu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Xiao Li
- School of Life Science, South China Normal University, Guangzhou, China
| | - De-Xiang Liu
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chu-Hua Li
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [DOI: 6.https:/doi.org/10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
7
|
Zhang Y, Liu W, Fu C, Liu X, Hou X, Niu H, Li T, Guo C, Li A, Chen B, Jin X. Diabetes and vascular mild cognitive impairment among Chinese ≥50 years: A cross-sectional study with 2020 participants. Brain Behav 2024; 14:e3477. [PMID: 38680021 PMCID: PMC11056693 DOI: 10.1002/brb3.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND With the decline of cognitive function in vascular cognitive impairment, the burden on the family and society will increase. Therefore, early identification of vascular mild cognitive impairment (VaMCI) is crucial. The focus of early identification of VaMCI is on the attention of risk factors. Therefore, this study aimed to investigate the relationship between diabetes and VaMCI among the Chinese, hoping to predict the risk of VaMCI by diabetes and to move the identification of vascular cognitive impairment forward. METHODS We collected data from seven clinical centers and nine communities in China. All participants were over 50 years of age and had cognitive complaints. We collected basic information of the participants, and cognitive function was professionally assessed by the Montreal Cognitive Assessment scale. Finally, logistic regression analysis was used to analyze the correlation between each factor and VaMCI. RESULTS A total of 2020 participants were included, including 1140 participants with VaMCI and 880 participants with normal cognition. In univariate logistic regression analysis, age, heavy smoking, and diabetes had a positive correlation with VaMCI. At the same time, being married, high education, and light smoking had a negative correlation with VaMCI. After correction, only diabetes (OR = 1.04, 95% CI: 1.01-1.09, p = 0.05) had a positive correlation with VaMCI, and high education (OR = 0.60, 95% CI:.45-.81, p = 0.001) had a negative correlation with VaMCI. CONCLUSION In our study, we found that diabetes had a positive correlation with VaMCI, and high education had a negative correlation with VaMCI. Therefore, early identification and timely intervention of diabetes may reduce the risk of VaMCI and achieve early prevention of VaMCI.
Collapse
Affiliation(s)
- Yu Zhang
- Department of NeurologyDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Wenna Liu
- Clinical Trial InstitutionDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Chen Fu
- Central LaboratoryDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xuemei Liu
- Central LaboratoryDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xiaobing Hou
- Department of NeurologyBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Huanmin Niu
- Department of NeurologyBeijing First Hospital of Integrated Chinese and Western MedicineBeijingChina
| | - Tao Li
- Department of GerontologyShanxi Traditional Chinese Medicinal HospitalTaiyuanChina
| | - Chunyan Guo
- Department of NeurologyDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Aixun Li
- Department of NeurologyDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Baoxin Chen
- Department of NeurologyDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xianglan Jin
- Department of NeurologyDongfang HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
8
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [PMID: 38679260 DOI: 10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD). METHODS Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated. RESULTS Based on the in vitro drug release studies, 99.6 % of the encapsulated CUR was released in a controlled manner within 18 days for the CNPs. In vitro cell culture studies showed that all samples exhibited cell viability above 84.2 % and no significant cytotoxic effect on SH-SY5Y cells. The samples were analyzed through 2 different pathways by PCR analysis. Real-time PCR results indicated that CNP and CNP-embedded SA/GEL scaffolds (CNPSGS) may show neuroprotective effects by modulating the Wnt/β-catenin pathway. The gene expression level of β-catenin slightly increased compared to the gene expression levels of other proteins and enzymes with these treatments. However, the PI3K/Akt/GSK-3β signaling pathway was regulated at the same time because of the crosstalk between these 2 pathways. CONCLUSION CNPSGS might be an effective therapeutic alternative for AD treatment.
Collapse
Affiliation(s)
- Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Patricia Santos Beato
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Sushma Priya
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | | | - Murat Dogan
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas 58140, Türkiye; Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 625 N. Michigan Ave., Suite 2100, Chicago, IL, 60611, USA
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Muhammet Emin Cam
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Türkiye.
| |
Collapse
|
9
|
Polat EB, Hazar-Yavuz AN, Guler E, Ozcan GS, Taskin T, Duruksu G, Elcioglu HK, Yazır Y, Cam ME. Sublingual Administration of Teucrium Polium-Loaded Nanofibers with Ultra-Fast Release in the Treatment of Diabetes Mellitus: In Vitro and In Vivo Evaluation. J Pharm Sci 2024; 113:1068-1087. [PMID: 38123068 DOI: 10.1016/j.xphs.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
In this study, Teucrium polium (TP) methanolic extract, which has antidiabetic activity and protects the β-cells of the pancreas, was loaded in polyethylene oxide/sodium alginate nanofibers by electrospinning and administered sublingually to evaluate their effectiveness in type-2 diabetes mellitus (T2DM) by cell culture and in vivo studies. The gene expressions of insulin, glucokinase, GLUT-1, and GLUT-2 improved in TP-loaded nanofibers (TPF) on human beta cells 1.1B4 and rat beta cells BRIN-BD11. Fast-dissolving (<120 s) sublingual TPF exhibited better sustainable anti-diabetic activity than the suspension form, even in the twenty times lower dosage in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, GLUT-2, SGLT-2, PPAR-γ, insulin, and tumor necrosis factor-alpha were improved. TP and TPF treatments ameliorated morphological changes in the liver, pancreas, and kidney. The fiber diameter increased, tensile strength decreased, and the working temperature range enlarged by loading TP in fibers. Thus, TPF has proven to be a novel supportive treatment approach for T2DM with the features of being non-toxic, easy to use, and effective.
Collapse
Affiliation(s)
- Elif Beyzanur Polat
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Gul Sinemcan Ozcan
- MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Gokhan Duruksu
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye
| | - Hatice Kubra Elcioglu
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Yusufhan Yazır
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; SFA R&D Laboratories, Teknopark Istanbul, Istanbul 34906, Türkiye; ATA BIO Technology, Teknopol Istanbul, Istanbul 34930, Türkiye.
| |
Collapse
|
10
|
Li Z, Zhang Z, Zhang Z, Wang Z, Li H. Cognitive impairment after long COVID-19: current evidence and perspectives. Front Neurol 2023; 14:1239182. [PMID: 37583958 PMCID: PMC10423939 DOI: 10.3389/fneur.2023.1239182] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is a respiratory infectious disease. While most patients recover after treatment, there is growing evidence that COVID-19 may result in cognitive impairment. Recent studies reveal that some individuals experience cognitive deficits, such as diminished memory and attention, as well as sleep disturbances, suggesting that COVID-19 could have long-term effects on cognitive function. Research indicates that COVID-19 may contribute to cognitive decline by damaging crucial brain regions, including the hippocampus and anterior cingulate cortex. Additionally, studies have identified active neuroinflammation, mitochondrial dysfunction, and microglial activation in COVID-19 patients, implying that these factors may be potential mechanisms leading to cognitive impairment. Given these findings, the possibility of cognitive impairment following COVID-19 treatment warrants careful consideration. Large-scale follow-up studies are needed to investigate the impact of COVID-19 on cognitive function and offer evidence to support clinical treatment and rehabilitation practices. In-depth neuropathological and biological studies can elucidate precise mechanisms and provide a theoretical basis for prevention, treatment, and intervention research. Considering the risks of the long-term effects of COVID-19 and the possibility of reinfection, it is imperative to integrate basic and clinical research data to optimize the preservation of patients' cognitive function and quality of life. This integration will also offer valuable insights for responding to similar public health events in the future. This perspective article synthesizes clinical and basic evidence of cognitive impairment following COVID-19, discussing potential mechanisms and outlining future research directions.
Collapse
Affiliation(s)
- Zhitao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuoya Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyong Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|