1
|
Xu R, Yu H, Wang Y, Li B, Chen Y, Liu X, Xu T. Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract. J Pharm Anal 2025; 15:101101. [PMID: 39957901 PMCID: PMC11830376 DOI: 10.1016/j.jpha.2024.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025] Open
Abstract
Natural products (NPs) have historically been a fundamental source for drug discovery. Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents, and corresponding targets. In the present study, an innovative natural product virtual screening-interaction-phenotype (NP-VIP) strategy that integrates virtual screening, chemical proteomics, and metabolomics to identify and validate the bioactive targets of NPs. This approach reduces false positive results and enhances the efficiency of target identification. Salvia miltiorrhiza (SM), a herb with recognized therapeutic potential against ischemic stroke (IS), was used to illustrate the workflow. Utilizing virtual screening, chemical proteomics, and metabolomics, potential therapeutic targets for SM in the IS treatment were identified, totaling 29, 100, and 78, respectively. Further analysis via the NP-VIP strategy highlighted five high-confidence targets, including poly [ADP-ribose] polymerase 1 (PARP1), signal transducer and activator of transcription 3 (STAT3), amyloid precursor protein (APP), glutamate-ammonia ligase (GLUL), and glutamate decarboxylase 67 (GAD67). These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM. The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research, proposing a comprehensive approach that could be adapted for broader pharmacological explorations.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yichen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China
| | - Boyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Tian Q, Han W, Wang D, Wang Z. Heterologous Expression of MYB Gene ( Rosea1) or bHLH Gene ( Delila) from Antirrhinum Increases the Phenolics Pools in Salvia miltiorrhiza. Int J Mol Sci 2024; 25:11917. [PMID: 39595986 PMCID: PMC11593512 DOI: 10.3390/ijms252211917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Phenolic acids have health-promoting properties, however, but their low concentrations in Salvia miltiorrhiza limit broader medicinal applications. MYB and bHLH transcription factors activate multiple target genes involved in phenylpropanoid metabolism, thereby enhancing the production of various secondary metabolites. We introduced the MYB transcription factor Antirrhinum Rosea1 (AmROS1) or Delila (AmDEL) into S. miltiorrhiza and observed that antioxidant activity in transgenic plants increased by 1.40 to 1.80-fold. The total content was significantly higher in transformants compared to the controls. Furthermore, heterologous expression of AmROS1 or AmDEL triggered moderate accumulations of rosmarinic acid and salvianolic acid at various growth stages. Levels of total phenolics, total flavonoids, and anthocyanins were significantly elevated. These biological and phytochemical alterations were correlated with the upregulated expression of genes involved in phenolic acid biosynthesis. Our findings demonstrate that AmROS1 and AmDEL function as a transcriptional activator in phenolic acids biosynthesis. This study offers further insights into the heterologous or homologous regulation of phenolics production, potentially enabling its engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
| | | | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China; (Q.T.)
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China; (Q.T.)
| |
Collapse
|
3
|
Li S, Liu Z, Zeng H, Fu J, Sun M, Bao C, Zhang C. Identification of active ingredients in Naomaitai capsules using high-resolution mass spectrometry unite molecular network analysis and prediction of their action mechanisms. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9898. [PMID: 39185580 DOI: 10.1002/rcm.9898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE Although Naomaitai capsule (NMC) is widely used in clinical practice and has a good curative effect for cerebral infarction, its material basis and mechanism of action remain unclear. METHODS In this study, ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole Orbitrap MS technology was used to analyse the in vivo and in vitro components of NMC, and the Global Natural Products Social Molecular Networking website was used to further analyse the components of NMC. Next, systems biology approaches were employed to investigate the mechanism of action of NMC. Finally, molecular docking technology was used to verify the network pharmacological results. RESULTS In total, 177 compounds were identified in vitro, including 65 terpenoids, 62 flavonoids, 25 organic acids and 11 quinones. 64 compounds were identified in the blood of mice, and the main active components included ginkgolide C, ginkgolide A, ligustilide, tanshinone IIB, olmelin, emodin and puerarin. The main targets in vivo included TP53, SRC, STAT3, PIK3CA and PIK3R1. CONCLUSIONS In conclusion, this study has revealed that NMC acts on multiple targets in the body through various active components, exerting synergistic effects in the treatment of CI. Its mechanism of action may involve inhibiting neuronal apoptosis, oxidative stress and inflammatory responses as well as reducing cerebral vascular permeability and promoting cerebral vascular regeneration.
Collapse
Affiliation(s)
- Shuang Li
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zhiyan Liu
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Haiping Zeng
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jinyu Fu
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chun Bao
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chenning Zhang
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
| |
Collapse
|
4
|
Huang P, Wang X, Cao Y, Yang J, Yao R, Liang L, Cheng G, Yang L. Research progress on the use of Salvia miltiorrhiza Bunge extracts in the treatment of pulmonary diseases. Biomed Pharmacother 2024; 179:117282. [PMID: 39146764 DOI: 10.1016/j.biopha.2024.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Salvia miltiorrhiza Bunge extracts, known for their diverse biological activities, often have remarkable efficacy in treating pulmonary diseases overlooked due to their specific cardiovascular actions. With the recent outbreak of COVID-19, research into pulmonary-related diseases has garnered significant attention. Salvia miltiorrhiza Bunge extracts can be broadly categorized into lipophilic and hydrophilic components; however, a comprehensive summary of their mechanisms in treating pulmonary diseases is lacking. Therefore, this review aims to systematically summarize the therapeutic mechanisms of 10 major Salvia miltiorrhiza Bunge extracts in treating pulmonary fibrosis, lung cancer, acute lung injury, and chronic obstructive pulmonary disease, with the goal of identifying promising options for efficacious therapies.
Collapse
Affiliation(s)
- Peifeng Huang
- School of Integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuezhen Wang
- School of Integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaming Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.
| | - Long Yang
- School of Integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Su Q, Wang L, Yu H, Li H, Zou D, Ni X. Chinese herbal medicine and acupuncture for insomnia in stroke patients: A systematic review and meta-analysis of randomised controlled trials. Sleep Med 2024; 120:65-84. [PMID: 38905930 DOI: 10.1016/j.sleep.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Insomnia is highly prevalent in stroke patients; however, there is no ideal intervention. This systematic review examined the effect and safety of Chinese herbal medicine (CHM) and acupuncture on sleep in adults with stroke. METHODS Six databases were searched from inception to June 2023 to identify randomised controlled trials (RCTs). The primary outcome was Pittsburgh Sleep Quality Index (PSQI) scores. Risk of bias and evidence quality was assessed. A pairwise random-effect meta-analysis was performed. RESULTS A total of 54 RCTs published in 55 articles were finally included in the systematic review, including 35 of CHM and 19 of acupuncture therapies. Compared with placebo/sham procedure, CHM and acupuncture were more effective in improving PSQI scores. The evidence of moderate quality suggested that CHM outperformed benzodiazepine drugs (BZDs) while it presented an effect similar to that of non-BZDs in improving sleep quality. CHM and acupuncture also provided additional benefits to the patients treated with pharmacological agents alone. However, the evidence specific to individual CHM prescriptions lay in various factors and methodological quality, and the evidence on the comparative effectiveness between acupuncture and other therapies was conflicting or limited. CONCLUSIONS Overall, CHM and acupuncture used alone or in combination with pharmacotherapy can safely improve sleep in stroke patients with insomnia. In the future, RCTs on outstanding CHM prescriptions and the comparative effectiveness research between acupuncture and other therapies are needed. REGISTRATION PROSPERO No. CRD42020194029 and No. CRD42020194030.
Collapse
Affiliation(s)
- Qing Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Liyan Wang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongshen Yu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Huishan Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Danmei Zou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojia Ni
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Wang M, Li Q, Ren B, Hao D, Guo H, Yang L, Wang Z, Dai L. Ethanolic extract of Arctium lappa leaves alleviates cerebral ischemia reperfusion-induced inflammatory injury via HDAC9-mediated NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155599. [PMID: 38669967 DOI: 10.1016/j.phymed.2024.155599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ischemic stroke (IS) is a major cause of mortality and disability worldwide. Inflammatory response is crucial in the pathogenesis of tissue injury in cerebral infarction. Arctium lappa leaves are traditionally used to treat IS. PURPOSES To investigate the neuroprotective effects and molecular mechanisms of the ethanolic extract of A. lappa leaves (ALLEE) on cerebral ischemia-reperfusion (CIR). METHODS Middle cerebral artery obstruction reperfusion (MCAO/R) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model were used to evaluate ALLEE pharmacodynamics. Various methods, including neurological function, 2,3,5-triphenyltetrazolium chloride, hematoxylin and eosin, and Nissl, enzyme-linked immunosorbent, and TdT-mediated dUTP nick-end labeling assays, were used to analyze the neuroprotective effects of ALLEE in vitro and in vivo. The major chemical components and potential target genes of ALLEE were screened using network pharmacology. Molecular docking, western blotting, and immunofluorescence analyses were performed to confirm the effectiveness of the targets in related pathways. RESULTS ALLEE exerted potent effects on the MCAO/R model by decreasing the neurological scores, infarct volumes, and pathological features (p < 0.01). Furthermore, network pharmacology results revealed that the treatment of IS with ALLEE involved the regulation of various inflammatory pathways, such as the tumor necrosis factor (TNF) and chemokine signaling pathways. ALLEE also played key roles in targeting key molecules, including nuclear factor (NF)-κBIA, NF-κB1, interleukin (IL)-6, TNF-α and IL1β, and regulating the histone deacetylase (HDAC)-9-mediated signaling pathway. In vivo and in vitro analyses revealed that ALLEE significantly regulated the NF-κB pathway, promoted the phosphorylation activation of NF-κB P65, IκB and IKK (p < 0.01 or p < 0.05), and decreased the expression levels of the inflammatory factors, IL-1β, IL-6 and TNF-α (p < 0.01). Moreover, ALLEE significantly decreased the expression of HDAC9 (p < 0.01) that is associated with inflammatory responses. However, HDAC9 overexpression partially reversed the neuroprotective effects of ALLEE and its suppressive effects on inflammation and phosphorylation of NF-κB (p < 0.01). CONCLUSIONS In conclusion, our results revealed that ALLEE ameliorates MCAO/R-induced experimental CIR by modulating inflammatory responses via the inhibition of HDAC9-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Mengmeng Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qingxia Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bingjie Ren
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Danli Hao
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Hui Guo
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lianhe Yang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhimin Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan 450046, China; Henan University of Chinese Medicine, Zhengzhou, Henan, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Liping Dai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan 450046, China; Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Liu Z, Gao J, Ban Y, Wan TT, Song W, Zhao W, Teng Y. Synergistic effect of paeoniflorin combined with luteolin in alleviating Lipopolysaccharides-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118022. [PMID: 38453101 DOI: 10.1016/j.jep.2024.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is an acute multifactorial infectious disease caused by trauma, pneumonia, shock and sepsis. Paeoniae Radix Rubra (Paeonia lactiflora Pall. or Paeonia veitchii Lynch, Chishao in Chinese, CS) and Salviae Miltiorrhizae Radix et Rhizoma (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese, DS) are common traditional Chinese medicines (TCMs). CS-DS herb pair has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, appearing in a variety of prescriptions. However, it is still unclear for the effect and active ingredients of the herb pair on ALI. AIM OF THE STUDY The study investigated the effect and active ingredients of CS-DS herb pair and demonstrated the synergistic effect and mechanisms of the active ingredients. MATERIALS AND METHODS Lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cells and BALB/c mice were used to establish an ALI model to investigate the effect of CS-DS herb pair on ALI. Network pharmacology and molecular docking were used to analyze the active ingredients and potential mechanisms of the herb pair. The synergistic effects and mechanisms of active ingredients on ALI were validated by in vitro and in vivo experiments. RESULTS CS-DS herb pair had a synergistic effect on LPS-induced ALI. Based on the network pharmacology, the compounds paeoniflorin and luteolin were screened. Both paeoniflorin and luteolin had good affinity for NF-κB and MAPK by molecular docking. LPS stimulation of RAW264.7 cells resulted in a significant increase in ROS, NO, TNF-α, IL-6 and IL-1β, while the paeoniflorin combined with luteolin significantly reduced their expressions. In the LPS-induced ALI model, the combination also reduced the expression of inflammatory factors and oxidative stress levels. Furthermore, LPS activated the NF-κB and MAPK signaling pathways, whereas the combination decreased the expression of proteins in both pathways. CONCLUSION CS-DS herb pair alleviated LPS-induced ALI with the active ingredients paeoniflorin and luteolin, which suppressed inflammation and oxidative stress via regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yuxuan Ban
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ting Ting Wan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjuan Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wanshun Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China; National & Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co. Ltd., Tianjin, China.
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
8
|
Qiao X, Cao S, Chen S, Guo Y, Chen N, Zheng Y, Jin B. Salvianolic acid A alleviates H 2O 2-induced endothelial oxidative injury via miR-204-5p. Sci Rep 2024; 14:11931. [PMID: 38789509 PMCID: PMC11126572 DOI: 10.1038/s41598-024-62556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.
Collapse
Affiliation(s)
- Xilin Qiao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuyu Cao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuaiyu Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Guo
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nipi Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Zheng
- The 903rd Hospital of the People's Liberation Army, Hangzhou, Zhejiang, China.
| | - Bo Jin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Wang Z, Han B, Qi J, Cao X, Gu H, Sun J. Chuanzhitongluo capsule improves cognitive impairment in mice with chronic cerebral hypoperfusion via the cholinergic anti-inflammatory pathway. Exp Gerontol 2024; 189:112407. [PMID: 38522309 DOI: 10.1016/j.exger.2024.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vascular cognitive impairment (VCI) has become a common disease-causing cognitive deficit in humans, second only to Alzheimer's Disease (AD). Chuanzhitongluo capsule (CZTL) is a Traditional Chinese Medicine (TCM) preparation known for its effective protection against cerebral ischemia. However, its potential to ameliorate VCI remains unclear. This study aimed to investigate the cognitive improvement effects of CZTL in a mouse model of VCI. Chronic cerebral hypoperfusion (CCH) was induced in mice by bilateral common carotid artery stenosis (BCAS) to simulate the pathological changes associated with VCI. Spatial learning and memory abilities were assessed using the Morris Water Maze (MWM). RNA sequencing (RNA-Seq) was employed to identify differentially expressed genes (DEGs) in the hippocampus. Levels of inflammatory factors were measured through enzyme-linked immunosorbent assay (ELISA), while immunofluorescence (IF) determined the expression intensity of target proteins. Western Blot (WB) confirmed the final action pathway. Results indicated that CZTL significantly improved the spatial learning and memory abilities of CCH mice, along with alterations in gene expression profiles in the hippocampus. It also reduced neuroinflammation in the hippocampus and upregulated the choline acetyltransferase (ChAT) and α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR), which are in synaptic plasticity and neuronal development. Moreover, CZTL inhibited the NF-κB signaling pathway. In conclusion, CZTL may alleviate neuroinflammation induced by CCH and improve cognitive impairment in CCH mice by regulating the cholinergic anti-inflammatory pathway (CAIP) involving ChAT/α7nAChR/NF-κB.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Institute of Integrative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianjiao Qi
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuelei Cao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huali Gu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Li Z, Li S, Xing Z, Gu Q, Du R, Jiang J, Yuan X, Zhang X, Chen X, Xue N, Zhang P, Jin J, Yang Y. Discovery of Natural Ah Receptor Antagonists from Salvia miltiorrhiza Bunge and Synthesis of Analogs for Tumor Immunotherapy. J Med Chem 2024; 67:1243-1261. [PMID: 38176026 DOI: 10.1021/acs.jmedchem.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
IDO/TDO/Kyn/AhR signaling plays a crucial role in regulating innate and adaptive immunity, and targeting Ah receptor (AhR) inhibition can potentially redirect immune cells toward an antitumoral phenotype. Therefore, AhR is an attractive drug target for novel small molecule cancer immunotherapies. In this study, natural products tanshinolic A-D (1-4), the first adducts composed of ortho-naphthoquinone-type tanshinone and phenolic acid featuring a unique 1,4-benzodioxan hemiacetal structure, were isolated and characterized from the roots of Salvia miltiorrhiza Bunge. Luciferase reporter gene assay revealed that these adducts exhibited significant AhR inhibitory activity. A linear strategy was developed to construct a cis-3,4-disubstituted 1,4-benzodioxan hemiacetal structure. Encouragingly, in both in vitro and in vivo experiments, (±)-13e demonstrated the ability to inhibit tumor cell proliferation, promote INF-γ secretion in CD8+ T cells, and inhibit PD-1/PD-L1 signal transduction, which could exert tumor inhibition properties by inhibiting AhR activity, positioning it as a promising candidate for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhenyuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuying Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeyu Xing
- Department of Breast Cancer, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Quanchang Gu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongrong Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianshuang Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peicheng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanan Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|