1
|
Singh P, Borkar M, Doshi G. Network pharmacology approach to unravel the neuroprotective potential of natural products: a narrative review. Mol Divers 2025:10.1007/s11030-025-11198-3. [PMID: 40279084 DOI: 10.1007/s11030-025-11198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Aging is a slow and irreversible biological process leading to decreased cell and tissue functions with higher risks of multiple age-related diseases, including neurodegenerative diseases. It is widely accepted that aging represents the leading risk factor for neurodegeneration. The pathogenesis of these diseases involves complex interactions of genetic mutations, environmental factors, oxidative stress, neuroinflammation, and mitochondrial dysfunction, which complicate treatment with traditional mono-targeted therapies. Network pharmacology can help identify potential gene or protein targets related to neurodegenerative diseases. Integrating advanced molecular profiling technologies and computer-aided drug design further enhances the potential of network pharmacology, enabling the identification of biomarkers and therapeutic targets, thus paving the way for precision medicine in neurodegenerative diseases. This review article delves into the application of network pharmacology in understanding and treating neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and spinal muscular atrophy. Overall, this article emphasizes the importance of addressing aging as a central factor in developing effective disease-modifying therapies, highlighting how network pharmacology can unravel the complex biological networks associated with aging and pave the way for personalized medical strategies.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Maheshkumar Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, V. M. Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Qin G, Song R, Sun J, Dai J, Wang W, Meng F, Wang D, Liu Z, Sun B, Li C. Unveiling the Therapeutic Potential of Banxia Xiexin Decoction in Alzheimer's Disease: Insights From Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2025; 19:2133-2155. [PMID: 40134954 PMCID: PMC11934878 DOI: 10.2147/dddt.s499852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Background Alzheimer's disease (AD) is associated with various pathological states for which there is no effective treatment. First documented in the Eastern Han Dynasty's medical classic, "Treatise on Febrile and Miscellaneous Diseases" (200-210 Anno Domini), Banxia Xiexin Decoction (BXD) stands as a quintessential approach to treating spleen ailments. Recent studies have shown BXD's effectiveness in mitigating memory impairment associated with AD. Yet, the precise mechanisms underlying BXD's action against AD require further exploration. Aim of the Study To explore the important components of BXD in exerting anti-AD effects and the underlying molecular mechanisms using network pharmacology, metabolomics analysis, and in vitro and in vivo validation strategies. Initially, candidates for BXD's application in AD therapy were identified through extensive database searches, followed by an analysis of protein-protein interactions (PPI). To elucidate BXD's therapeutic pathways in AD, we engaged in Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) assessments. Further, we delved into BXD's primary constituents through ultra-high-pressure liquid chromatography coupled with Q Exactive mass spectrometry and molecular docking techniques. Finally, AD-associated Aβ42-SY5Y cells and APPswe/PS1dE9 (APP/PS1) transgenic mice models were utilized to further determine the activity and mechanisms of BXD through various molecular or phenotypic assays and metabolomics analysis. Results Our findings identified the PI3K/Akt signaling pathways as central to BXD's effects. Using in vitro and in vivo models, we found the activity of BXD against AD to be mediated by the suppression of neuroinflammation and apoptosis, accompanied by activation of the PI3K/Akt pathway. Finally, we observed robust changes in metabolite levels in the plasma of BXD-treated APP/PS1 mice. Conclusion Through systematic data analysis and experimental validation, the therapeutic advantages and fundamental molecular mechanisms of BXD in treating AD were revealed. These findings underscore the promising prospects and compelling potential of BXD, which targets the PI3K/Akt signaling pathway and inflammation, apoptosis, as a therapeutic strategy for improving AD.
Collapse
Affiliation(s)
- Gaofeng Qin
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
- Postdoctoral Research Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Rongqiang Song
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Juanjuan Dai
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Wentao Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Dan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Zhe Liu
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Baoliang Sun
- Second AfFIliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, People’s Republic of China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Chan RJ, Walker A, Vardy J, Chan A, Oppegaard K, Conley YP, Paul SM, Kober KM, Harris C, Shin J, Morse L, Roy R, Olshen A, Hammer MJ, Levine JD, Miaskowski C. Perturbations in the neuroactive ligand-receptor interaction and renin angiotensin system pathways are associated with cancer-related cognitive impairment. Support Care Cancer 2025; 33:254. [PMID: 40047999 PMCID: PMC11885406 DOI: 10.1007/s00520-025-09317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025]
Abstract
PURPOSE This study reports on the results from our data-driven approach that identified perturbations in neuroactive ligand-receptor interaction and renin-angiotensin system (RAS) pathways in oncology patients with and without self-reported cancer-related cognitive impairment (CRCI). METHODS In a sample of oncology patients receiving chemotherapy (n = 1343), the Attentional Function Index (AFI) was used to assess CRCI. Patients were grouped into low (AFI score of < 5) versus high (AFI score of > 7.5) levels of cognitive function. Gene expression analyses were done using RNA-seq (n = 185) and microarray (n = 158) technologies. Pathway impact analysis was used to evaluate for perturbations in biological pathways associated with self-reported CRCI. RESULTS The combined pathway impact analysis revealed that the neuroactive ligand-receptor interaction and RAS pathways were significantly perturbed between the patients with low versus high AFI scores. CONCLUSIONS Findings from this study suggest that in addition to inflammatory pathways, numerous mechanisms may contribute to the underlying mechanisms for the development and/or persistence of self-reported CRCI.
Collapse
Affiliation(s)
- Raymond J Chan
- Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Adam Walker
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Janette Vardy
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alexandre Chan
- School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | | | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Carolyn Harris
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joosun Shin
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Lisa Morse
- School of Nursing, University of California, San Francisco, CA, USA
| | - Ritu Roy
- School of Medicine, University of California, San Francisco, CA, USA
| | - Adam Olshen
- School of Medicine, University of California, San Francisco, CA, USA
| | | | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, CA, USA.
- School of Medicine, University of California, San Francisco, CA, USA.
- Department of Physiological Nursing, University of California, San Francisco, 490 Illinois Street, Floor 12, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Chen D, Sun Y. Current Status of Plant-Based Bioactive Compounds as Therapeutics in Alzheimer's Diseases. J Integr Neurosci 2025; 24:23090. [PMID: 39862001 DOI: 10.31083/jin23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD. Numerous studies have shown that medicinal plants and their active ingredients can potentially mitigate AD by regulating various molecular mechanisms, including the production and aggregation of pathological proteins, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurogenesis, neurotransmission, and the brain-gut microbiota axis. In this review, we analyzed the pathogenesis of AD and comprehensively summarized recent advancements in research on medicinal plants for the treatment of AD, along with their underlying mechanisms and clinical evidence. Ultimately, we aimed to provide a reference for further investigation into the specific mechanisms through which medicinal plants prevent and treat AD, as well as for the identification of efficacious active ingredients derived from medicinal plants.
Collapse
Affiliation(s)
- Dan Chen
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Yun Sun
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
5
|
Pei C, Yu J, Wang G, Jia YR, Shi X, Zhang L. Exploring the mechanism of Sendeng-4 against rheumacid arthritis through integrated serum pharmacochemistry, transcriptomics, and network pharmacology. Biomed Chromatogr 2024; 38:e5893. [PMID: 38853700 DOI: 10.1002/bmc.5893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/11/2024]
Abstract
Mongolian medicine Sendeng-4 (SD-4) has demonstrated satisfactory clinical treatment outcomes for rheumatoid arthritis (RA); nevertheless, its bioactive components and the related mechanisms have not yet been clearly elucidated. To explore the bioactive chemical components of SD-4 in the treatment of RA and its possible mechanisms, an High Performance Liquid Chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to simultaneously quantify the main components in SD-4, and ultraperformance LC-Q-Exactive-MS/MS (UPLC-Q-Exactive-MS/MS) was used to identify the phytochemicals absorbed in the serum. Then, using network pharmacology methods, these components were constructed into a compound-target network of RA to predict possible biological targets of SD-4 as well as potential signaling pathways. Transcriptomics analysis and molecular docking were used to validate the results of network pharmacology. Subsequently, we established a complete Freund's adjuvant-induced RA rat model and observed the anti-RA effects of SD-4 through assessments of foot swelling, ankle diameter, arthritis score, morphology, serum inflammatory factors, and histopathological analysis of synovial tissue. Specifically, reverse transcription-quantitative polymerase chain reaction, Western blot, and immunohistochemical analysis were used in animal experiments to validate the pathways of serum phytochemistry, network pharmacology, and transcriptomics. Tannic acid, gallic acid, corilagin, crocin I, gardenoside, ferulic acid, quercetin, limonin, rutin, chlorogenic acid, verbascoside, catechin, epicatechin, myricetin, and dihydromyricetin in SD-4 showed good linearity within their respective concentration ranges (r ≥ 0.9991); the average recovery rate was 93.77%-109.17% (relative standard deviation < 2%). A total of 37 compounds were identified in serum samples. Based on this, network pharmacology methods collected 739 genes related to these identified compounds in SD-4 and 3807 genes related to RA. Network pharmacology and transcriptomic analysis demonstrated that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway is the most relevant pathway affected by SD-4 in RA. In the experiments, SD-4 treatment reduced ankle swelling and arthritis scores in RA rats, improved symptoms, and reduced the production of inflammatory factors. Compared with the RA model group, SD-4 treatment significantly reduced the expression of PI3K-Akt pathway-related messenger RNA and proteins. In addition, immunohistochemical analysis confirmed these results. This study combined serum phytochemistry, network pharmacology, and transcriptomics to demonstrate that SD-4 can alleviate RA by regulating the PI3K-Akt signaling pathway. This research provides a theoretical basis for the clinical application of SD-4 and offers an effective strategy for the identification of bioactive substances in traditional Chinese medicine formulas and the study of their potential mechanisms.
Collapse
Affiliation(s)
- Chenyue Pei
- Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, Inner Mongolia, P. R. China
| | - Jiuwang Yu
- Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, Inner Mongolia, P. R. China
| | - Guanglong Wang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Yan Ru Jia
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Xinran Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Liang Zhang
- Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, Inner Mongolia, P. R. China
| |
Collapse
|
6
|
Takata T, Inoue S, Masauji T, Miyazawa K, Motoo Y. Generation and Accumulation of Various Advanced Glycation End-Products in Cardiomyocytes May Induce Cardiovascular Disease. Int J Mol Sci 2024; 25:7319. [PMID: 39000424 PMCID: PMC11242264 DOI: 10.3390/ijms25137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka, Fukui 918-8503, Japan
| |
Collapse
|
7
|
Cheung S, Zhong Y, Wu L, Jia X, He MQ, Ai Y, Jiao Q, Liang Q. Mechanism interpretation of Guhan Yangshengjing for protection against Alzheimer's disease by network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117976. [PMID: 38492794 DOI: 10.1016/j.jep.2024.117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guhan Yangshengjing (GHYSJ) is an effective prescription for delaying progression of Alzheimer's disease (AD) based on the ancient Chinese medical classics excavated from Mawangdui Han Tomb. Comprising a combination of eleven traditional Chinese herbs, the precise protective mechanism through which GHYSJ acts on AD progression remains unclear and has significant implications for the development of new drugs to treat AD. AIM OF THE STUDY To investigate the mechanism of GHYSJ in the treatment of AD through network pharmacology and validate the results through in vitro experiments. MATERIALS AND METHODS Chemical composition-target-pathway network and protein-protein interaction network were constructed by network pharmacology to predict the potential targets of GHYSJ for the treatment of AD. The interaction relationship between active ingredients and targets was verified by molecular docking and molecular force. Furthermore, the chemical constituents of GHYSJ were analyzed by LC-MS and HPLC, the effects of GHYSJ on animal tissues were analyzed by H&E staining. An Aβ-induced SH-SY5Y cellular model was established to validate the core pathways and targets predicted by network pharmacology and molecular docking. RESULTS The results of the network pharmacology analysis revealed a total of 155 bioactive compounds capable of crossing the blood-brain barrier and interacting with 677 targets, among which 293 targets specifically associated with AD, which mainly participated in and regulated the amyloid aggregation pathway and PI3K/Akt signaling pathway, thereby treating AD. In addition, molecular docking analysis revealed a robust binding affinity between the principal bioactive constituents of GHYSJ and crucial targets implicated in AD. Our findings were further substantiated by in vitro experiments, which demonstrated that Liquiritigenin and Ginsenosides Rh4, crucial constituents of GHYSJ, as well as GHYSJ pharmaceutic serum, exhibited a significant down-regulation of BACE1 expression in Aβ-induced damaged SH-SY5Y cells. This study provides valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD and secondary development of GHYSJ prescription. CONCLUSION Through network pharmacology, molecular docking, LC-MS, and cellular experiments, GHYSJ was initially confirmed to delay the progression of AD by regulating the expression of BACE1 in Amyloid aggregation pathway. Our observations provided valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD.
Collapse
Affiliation(s)
- Suet Cheung
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | - Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaomeng Jia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Takata T, Masauji T, Motoo Y. Analysis of Crude, Diverse, and Multiple Advanced Glycation End-Product Patterns May Be Important and Beneficial. Metabolites 2023; 14:3. [PMID: 38276293 PMCID: PMC10819149 DOI: 10.3390/metabo14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Lifestyle-related diseases (LSRDs), such as diabetes mellitus, cardiovascular disease, and nonalcoholic steatohepatitis, are a global crisis. Advanced glycation end-products (AGEs) have been extensively researched because they trigger or promote LSRDs. Recently, techniques such as fluorimetry, immunostaining, Western blotting, slot blotting, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry, matrix-assisted laser desorption-mass spectrometry (MALDI-MS), and electrospray ionization-mass spectrometry (ESI-MS) have helped prove the existence of intra/extracellular AGEs and revealed novel AGE structures and their modifications against peptide sequences. Therefore, we propose modifications to the existing categorization of AGEs, which was based on the original compounds identified by researchers in the 20th century. In this investigation, we introduce the (i) crude, (ii) diverse, and (iii) multiple AGE patterns. The crude AGE pattern is based on the fact that one type of saccharide or its metabolites or derivatives can generate various AGEs. Diverse and multiple AGE patterns were introduced based on the possibility of combining various AGE structures and proteins and were proven through mass analysis technologies such as MALDI-MS and ESI-MS. Kampo medicines are typically used to treat LSRDs. Because various compounds are contained in Kampo medicines and metabolized to exert effects on various organs or tissues, they may be suitable against various AGEs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|