1
|
Cai W, Jiang L, Zhao C, Zhou X. Advances in omics technologies for traditional Chinese medicine in the prevention and treatment of metabolic bone diseases. Front Pharmacol 2025; 16:1576286. [PMID: 40290428 PMCID: PMC12021879 DOI: 10.3389/fphar.2025.1576286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic bone disease (MBD), as one of the most severe metabolic disorders, remains a focal point and challenge in medical research. Numerous studies have demonstrated the efficacy of Traditional Chinese Medicine (TCM) in preventing and treating MBD. However, the inherent complexity of TCM metabolites poses significant limitations in elucidating their mechanisms of action. The advancement of omics technologies, including metabolomics, proteomics, and transcriptomics, has greatly facilitated research on MBD. These approaches enable the identification of potential biomarkers and the exploration of metabolic pathways and mechanisms underlying TCM interventions for MBD. Evidence indicates that TCM monomers, single botanical drugs, and herbal formulations are effective, safe, and well-tolerated in MBD prevention and treatment. This review summarizes recent applications and key findings of transcriptomics, proteomics, and metabolomics in studying the mechanisms of TCM interventions for MBD. It highlights the role of omics technologies in uncovering relevant metabolites and pathways under TCM treatment, providing valuable insights and clinical references for TCM-based strategies in managing MBD.
Collapse
Affiliation(s)
- Wenjun Cai
- Changchun University of Chinese Medicine, Changchun, China
- Department of Orthopedics, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiang
- Department of Endocrinology, Changchun Hospital of Chinese Medicine, Changchun, China
| | - Changwei Zhao
- Changchun University of Chinese Medicine, Changchun, China
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine. Changchun, China
| | - Xiaoling Zhou
- Changchun University of Chinese Medicine, Changchun, China
- Department of Geriatrics, The Affiliated Hospital of Changchun University of Chinese Medicine. Changchun, China
| |
Collapse
|
2
|
Huang L, Wang X, Zhou W, Li Z, Chen C, Sun Y. Hydrolyzed egg yolk peptide alleviates ovariectomy-induced osteoporosis by regulating lipid metabolism. Int J Biol Macromol 2025; 292:139223. [PMID: 39733873 DOI: 10.1016/j.ijbiomac.2024.139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Osteoporosis is a systemic, progressive bone disease that causes metabolic disorders. Previous study identified the preventive effects of hydrolyzed egg yolk peptide (YPEP) on osteoporosis. However, the underlying antiosteoporosis mechanism remains unclear. Herein, 30 female rats were randomly divided into 5 groups (n = 6), including the sham, OVX, E2 (25 μg/kg/d 17β-estradiol), LYPEP (10 mg/kg/d YPEP), and HYPEP (40 mg/kg/d YPEP) groups. YPEP treatment significantly changed bone turnover marker levels and prevented the deterioration of bone structure and strength caused by ovariectomy. YPEP supplementation significantly changed endogenous metabolites related to lipid metabolism in the serum of ovariectomized rats, identifying 46 metabolites closely linked to bone biomarkers. Additionally, YPEP reduced the expression of the lipid metabolism-related protein peroxisome proliferator-activated receptor PPARγ and increased the expression of bone formation proteins BMP2 and RUNX2. Collectively, these results elucidated that YPEP improves osteoporosis by inhibiting lipogenesis to promote bone formation. This study provides novel evidence for the use of YPEP in treating osteoporosis.
Collapse
Affiliation(s)
- Ludi Huang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xincen Wang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Zhou
- Radiology Department of Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), China
| | - Zeqi Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chuanjing Chen
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongye Sun
- School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Huang W, Hua F, Su T, Zhou C, Zhao K, Song D. sEV-mediated lipid droplets transferred from bone marrow adipocytes promote ferroptosis and impair osteoblast function. J Lipid Res 2024; 65:100657. [PMID: 39326787 PMCID: PMC11535364 DOI: 10.1016/j.jlr.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Osteoporosis is linked to increased bone marrow adipocyte (BMAd) proliferation, which displaces bone-forming cells and alters the local environment. The impact of BMAd lipid droplets on bone health and osteoblast function remains unclear. This study investigates the interplay between BMAd-derived lipid droplets and osteoblast functionality, focusing on ferroptosis pathways. Osteoblast cultures were treated with conditioned media from adipocytes to simulate in vivo conditions. High-throughput mRNA sequencing and Western blot analysis were used to profile changes in gene expression and protein levels related to ferroptosis, oxidative phosphorylation, and osteogenic markers. Cellular assays assessed the direct impact of lipid droplets on osteoblast activity. Results showed that osteoblasts exposed to adipocyte-conditioned media had increased intracellular lipid droplet accumulation, upregulation of ferroptosis-related genes and proteins, and downregulation of oxidative phosphorylation and osteoblast differentiation markers. Treatment with ferroptosis inhibitors reversed the detrimental effects on osteoblasts, indicating the functional relevance of this pathway in osteoporosis. BMAd-derived lipid droplets contribute to osteoblast dysfunction through ferroptosis induction. Inhibiting ferroptosis could preserve osteoblast function and combat osteoporosis-related bone issues, suggesting that modulating lipid metabolism and redox balance in bone cells may be promising for future treatments.
Collapse
Affiliation(s)
- Weibo Huang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Hua
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Su
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangcheng Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Yang Q, Wang X, Liu Y, Liu J, Zhu D. Metabolic factors are not the direct mediators of the association between type 2 diabetes and osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1404747. [PMID: 39119008 PMCID: PMC11306037 DOI: 10.3389/fendo.2024.1404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Objective The causal relationship between type 2 diabetes mellitus (T2DM) and osteoporosis (OS) remains unclear. This study aims to investigate the causal relationship and explore the potential metabolic mechanism and its mediating role. Methods We conducted a comprehensive study, gathering data on 490,089 T2DM patients from the genome-wide association study (GWAS) database and selecting OS data from FinnGen and MRC-IEU sources, including 212,778 and 463,010 patients, respectively, for causal analysis. Simultaneously, we explored the potential roles of three obesity traits and 30 metabolic and inflammation-related mediating variables in the causal relationship. Results There is a strong causal relationship between T2DM and OS. The data from our two different database sources appeared in the same direction, but after correcting for body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR), the direction became the same. T2DM may increase the risk of OS [odds ratio (OR) > 1.5, p < 0.001]. Steiger's test results show that there is no reverse causality. No risk factors related to glycolipid metabolism, amino acid metabolism, and inflammation were found to mediate the causal relationship. Conclusion This study's findings indicate a robust causal relationship between T2DM and OS, influenced by relevant factors such as BMI. Our results shed light on the pathogenesis of OS and underscore the importance for clinicians to treat metabolic disorders to prevent osteoporosis.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Yanwei Liu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong Zhu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhang XY, Jiang QW, Yang SH, Li P, Chang ZY, Li F. The chemometrics analysis and integrated pharmacology approach to decipher the effect and mechanism between raw and processed cistanche tubulosa. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118097. [PMID: 38531432 DOI: 10.1016/j.jep.2024.118097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche tubulosa (CT) is the dried fleshy stem with scaly leaves of Cistanche tubiflora (Schenk) Wight, which has the effects of tonifying the kidney-yang, benefiting the vital essence and blood, and moisturizing the intestines and laxatives. There are differences in the activity of CT before and after processing, but the mechanism of processing is not clear. AIM OF THE STUDY The study aimed to compare the strength of action of CT before and after yellow-wine processing in the treatment of constipation and kidney yang deficiency and to identify the active ingredients responsible for the differences in activity before and after yellow-wine processing. MATERIALS AND METHODS This study established the fingerprints of CT and PCT using HPLC to identify their shared components. Then efficacy of KYDS and FC were carried out to compare the differences between CT and PCT in terms of efficacy. Next, this study established the spectrum-effect relationship between the shared chemical components and the medical effects of CT and PCT using the gray correlation analysis and entropy methods. Ultimately, the activity of the analyzed chemical components was verified using the zebrafish model. RESULTS CT was more effective than PCT in promoting intestinal peristalsis, regulating gastrointestinal hormone levels, and thus treating FC. PCT was more effective than CT in improving the level of hormone indexes of the hypothalamus-pituitary-target gland axis, replenishing blood, and enhancing immunity. Through the analysis of the spectrum-effect relationship, it was finally found that 5, 6, 12 (tubuloside A), and 13 (isoacteoside) might be more closely related to the activity of tonifying kidney yang, and peaks 9, 10, and 11 (acteoside) are more closely associated with the treatment of constipation, and peaks 3 (salidroside), 4, 1, 2 (geniposidic acid), and 8 (echinacoside) were associated with both kidney yang tonic and treatment of constipation. At the same time, an activity verification experiment showed that echinacoside, geniposidic acid, and salidroside were effective in the treatment of FC and KYDS, while acteoside was very effective in the treatment of FC, and tubuloside A was significant in supplementing the blood, which validated the spectrum-effect relationship analysis. CONCLUSION This study proved that the raw CT had a better laxative effect, while the yellow-wine processed CT had a better kidney-yang tonic effect; moreover, spectrum-effect relationships were established to analyze the chemical components leading to changes in the activity of CT before and after yellow-wine processing.
Collapse
Affiliation(s)
- Xing-Yue Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Qi-Wu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Su-Han Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhi-Yong Chang
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, 210029, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
7
|
Karachaliou CE, Livaniou E. Biotin Homeostasis and Human Disorders: Recent Findings and Perspectives. Int J Mol Sci 2024; 25:6578. [PMID: 38928282 PMCID: PMC11203980 DOI: 10.3390/ijms25126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|