1
|
Zhong L, Zhu B, Su W, Liang W, Wang H, Li T, Cao D, Ruan T, Chen J, Jiang G. Molecular characterization of diverse quinone analogs for discrimination of aerosol-bound persistent pyrolytic and photolytic radicals. Sci Bull (Beijing) 2024; 69:612-620. [PMID: 38101961 DOI: 10.1016/j.scib.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Aerosol-bound organic radicals, including environmentally persistent free radicals (EPFRs), are key components that affect climate, air quality, and human health. While putative structures have been proposed, the molecular characteristics of EPFRs remain unknown. Here, we report a surrogate method to characterize EPFRs in real ambient samples using mass spectrometry. The method identifies chemically relevant oxygenated polycyclic aromatic hydrocarbons (OxPAH) that interconvert with oxygen-centered EPFR (OC-EPFR). We found OxPAH compounds most relevant to OC-EPFRs are structurally rich and diverse quinones, whose diversity is strongly associated with OC-EPFR levels. Both atmospheric oxidation and combustion contributed to OC-EPFR formation. Redundancy analysis and photochemical aging model show pyrolytic sources generated more oxidized OC-EPFRs than photolytic sources. Our study reveals the detailed molecular characteristics of OC-EPFRs and shows that oxidation states can be used to identify the origins of OC-EPFRs, offering a way to track the development and evolution of aerosol particles in the environment.
Collapse
Affiliation(s)
- Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Qin X, Chen Z, Gong Y, Dong P, Cao Z, Hu J, Xu J. Persistent Uptake of H 2O 2 onto Ambient PM 2.5 via Dark-Fenton Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9978-9987. [PMID: 35758291 DOI: 10.1021/acs.est.2c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) and gaseous hydrogen peroxide (H2O2) interact ubiquitously to influence atmospheric oxidizing capacity. However, quantitative information on H2O2 loss and its fate on urban aerosols remain unclear. This study investigated the kinetics of heterogeneous reactions of H2O2 on PM2.5 and explored how these processes are affected by various experimental conditions (i.e., relative humidity, temperature, and H2O2 concentration). We observed a persistent uptake of H2O2 by PM2.5 (with the uptake coefficients (γ) of 10-4-10-3) exacerbated by aerosol liquid water and temperature, confirming the critical role of water-assisted chemical decomposition during the uptake process. A positive correlation between the γ values and the ratio of dissolved iron concentration to H2O2 concentration suggests that Fenton catalytic decomposition may be an important pathway for H2O2 conversion on PM2.5 under dark conditions. Furthermore, on the basis of kinetic data gained, the parameterization of H2O2 uptake on PM2.5 was developed and was applied into a box model. The good agreement between simulated and measured H2O2 uncovered the significant role that heterogeneous uptake plays in the sink of H2O2 in the atmosphere. These findings suggest that the composition-dependent particle reactivity toward H2O2 should be considered in atmospheric models for elucidating the environmental and health effects of H2O2 uptake by ambient aerosols.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ping Dong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijiong Cao
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jingcheng Hu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiayun Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Diveky ME, Gleichweit MJ, Roy S, Signorell R. Shining New Light on the Kinetics of Water Uptake by Organic Aerosol Particles. J Phys Chem A 2021; 125:3528-3548. [PMID: 33739837 DOI: 10.1021/acs.jpca.1c00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The uptake of water vapor by various organic aerosols is important in a number of applications ranging from medical delivery of pharmaceutical aerosols to cloud formation in the atmosphere. The coefficient that describes the probability that the impinging gas-phase molecule sticks to the surface of interest is called the mass accommodation coefficient, αM. Despite the importance of this coefficient for the description of water uptake kinetics, accurate values are still lacking for many systems. In this Feature Article, we present various experimental techniques that have been evoked in the literature to study the interfacial transport of water and discuss the corresponding strengths and limitations. This includes our recently developed technique called photothermal single-particle spectroscopy (PSPS). The PSPS technique allows for a retrieval of αM values from three independent, yet simultaneous measurements operating close to equilibrium, providing a robust assessment of interfacial mass transport. We review the currently available data for αM for water on various organics and discuss the few studies that address the temperature and relative humidity dependence of αM for water on organics. The knowledge of the latter, for example, is crucial to assess the water uptake kinetics of organic aerosols in the Earth's atmosphere. Finally, we argue that PSPS might also be a viable method to better restrict the αM value for water on liquid water.
Collapse
Affiliation(s)
- Matus E Diveky
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Michael J Gleichweit
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Sandra Roy
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|