1
|
Rindelaub JD, Miskelly GM. Inhalable microplastics and plastic additives in the indoor air of chemical laboratories. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00768-0. [PMID: 40158056 DOI: 10.1038/s41370-025-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND While recognition of airborne microplastics is increasing, there are still limited data on the microplastics within the aerosol size fractions most relevant to human inhalation (PM10 and PM2.5). Additionally, there are concerns that many of the additives used in plastic formulations have endocrine-disrupting properties, which could increase the hazards associated with microplastic exposure. OBJECTIVE To better understand the toxicological risks associated with airborne microplastics, more data are urgently needed on the mass concentrations of both microplastics and the related chemical additives in the air we breathe. Inhalation exposure to plastic-related species is currently uncertain in chemical laboratory workplaces. METHODS Using a Pyrolysis Gas Chromatography Mass Spectrometry (Pyr-GC/MS) based method, the airborne mass concentrations of both polymeric material and small molecule plastic additives were determined in inhalable air from two indoor locations. This method represents a fast, direct technique that can be used to better standardize airborne microplastic measurements. RESULTS The PM2.5 and PM10 concentrations of seven different polymers were determined, with average plastic concentrations of 0.51 μg m-3 for the PM2.5 samples and 1.14 µg m-3 for the PM10 samples. Polycarbonate, polyvinylchloride, and polyethylene had the highest airborne concentrations in the inhalable fraction of air. Simultaneously, the airborne concentrations of plastic additives were determined, with phthalate-based plasticizers having an average concentration of 334 ng m-3 across all air samples. IMPACT Both microplastics and their chemical additives were quantified within the inhalable fraction of indoor air (PM10), using a straight forward mass spectrometry technique with minimal sample preparation. This information furthers knowledge on the hazards associated with indoor air exposure, and it presents a useful methodology for the mass quantification of plastic-related airborne pollutants.
Collapse
Affiliation(s)
- Joel D Rindelaub
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Gordon M Miskelly
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Bonilla-Enriquez G, Caballero-Morales SO. Analyzing exposure risks in warehousing due to the presence of phthalate contamination. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2025:1-8. [PMID: 40028764 DOI: 10.1080/10803548.2024.2444141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phthalate esters (PAEs) are widely used in plastic consumer products and many studies published to date have associated these chemicals with severe human health problems. Particularly, the risks within warehouses, which involve large quantities of PAE sources stored in closed spaces, have not been addressed. This article presents an integrated inventory control model to determine the periods within the supply cycle where concentrations of PAEs are likely to represent a risk for the warehouse personnel. This model considers the dynamic aspect of the warehouse supply and consumption mechanisms, and links it to the release patterns of PAEs in closed environments which depend on the type of materials, temperature and time. Numerical analysis corroborates that, in certain periods of time, concentrations of PAEs in the warehouse can exceed permissible levels for humans, and thus the use of appropriate protective wear and decontamination procedures should be established.
Collapse
Affiliation(s)
- Gladys Bonilla-Enriquez
- Department of Logistics, National Technological Institute of Mexico - Puebla Institute of Technology (TecNM - ITP), Mexico
| | | |
Collapse
|
3
|
Lv J, Sun S, Wu R, Li X, Bai Y, Xu J, Guo C. Phthalate esters in dusts from different indoor and outdoor microenvironment and potential human health risk: A case study in Beijing. ENVIRONMENTAL RESEARCH 2025; 266:120513. [PMID: 39631649 DOI: 10.1016/j.envres.2024.120513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Phthalate esters (PAEs) are widely used plasticizers that can easily migrate from plastic products, thereby presenting potential health risks through exposure. While PAE concentrations in dust have received increasing attention, there is still a lack of comprehensive understanding regarding their environmental distribution, composition profiles, and associated human exposure risks in Beijing. This study investigated the presence of seven PAEs in 124 dust samples collected from eight indoor and four outdoor microenvironment types across the Beijing metropolitan area. The PAEs were detected universally in all samples, with di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and di-iso-butyl phthalate (DIBP) as the predominant compounds, accounting for 91.78%-99.91% and 91.22%-99.76% of total PAE concentrations (Σ7PAEs) in indoor and outdoor dust, respectively. Indoor dust exhibited significantly higher Σ7PAEs (range: 45.33-1212.41 μg/g, mean: 130.61 μg/g) compared to outdoor dust (range: 2.10-5.41 μg/g, mean: 3.38 μg/g). Among indoor microenvironments, taxis had the highest Σ7PAEs (mean: 1250.59 μg/g), followed by private cars, print shops, residences, furniture shops, shopping malls, dormitories and offices. Outdoor Σ7PAEs levels decreased in the order of roads, residential areas, green belts, and parks. Estimated daily exposure doses through dust ingestion were significantly higher than those from dermal absorption and inhalation for five occupational groups (taxi drivers, print shop workers, road workers, office workers, jobless people), indicating dust ingestion as the primary exposure route, with DEHP and DBP as the main contributors. While current exposure levels may not present significant non-cancer risks based on hazard quotient and hazard index estimations, it's noteworthy that DEHP may pose a carcinogenic risk to taxi drivers. Potential risks cannot be overlooked considering the absence of toxicity thresholds, additional exposure pathways, and possible cocktail effects from coexisting pollutants.
Collapse
Affiliation(s)
- Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shanwei Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xu Li
- Beijing Jianhua Experimental E-Town School, Beijing, 100023, China
| | - Yangwei Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Ehrampush MH, Abouee E, Arfaeinia H, soltanian Z, Ghorbanian M, Ghalehaskari S. Occurrence, distribution and risk assessment of phthalate esters in dust deposited in the outdoor environment of Yazd industrial park using Monte Carlo simulation. Heliyon 2024; 10:e37500. [PMID: 39309782 PMCID: PMC11416271 DOI: 10.1016/j.heliyon.2024.e37500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, the distribution of eight phthalate esters (PAEs), namely (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)) were examined across fifteen sampling stations in Yazd industrial Park. All the PAEs in dust deposited in the outdoor environment were analyzed using a Gas-mass chromatography (GC-MS/MS) device. Both probabilistic and deterministic approaches were utilized to assess the non-carcinogenic and carcinogenic health risks for adult occupational population groups. These risks were associated with three exposure pathways: inhalation, ingestion, and dermal exposure to six phthalates in the dust samples. The findings revealed, among the fifteen sampling stations, highest and lowest concentrations of the PAEs in dust deposited in the outdoor environment were observed in S8 and S6, with BEHP (326.21 ± 4.35) μg/g and DMP (0.00 ± 0.02) μg/g, respectively. The total hazard index (HI) values were below one in all samples, indicating that the combined non-carcinogenic health risk from exposure to phthalates via inhalation, ingestion, and dermal pathways is within acceptable levels in each studied area. The total cancer risk (CR) values for BBP across all exposure routes were consistently low, with magnitudes ranging from 10- x 10-15to 10 x 10-11. The order of cancer risk from phthalate exposure in outdoor environments was ingestion > dermal > inhalation. The sensitivity analysis (SA) results indicated that the influential parameters in the carcinogenic risk in adult occupational population groups were concentration for inhalation and dermal pathways, as well as ingestion rate for the ingestion pathway. The result of this study provides new insight in to PAEs pollution and risk assessments related to the dust deposited in the outdoor environment of industrial Park. Furthermore, this finding is beneficial to the controlling the exposure and promoting steps to reduce PAEs contamination and manage health in the industrial area.
Collapse
Affiliation(s)
- Mohammad Hasan Ehrampush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Abouee
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra soltanian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Ghorbanian
- Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Iran
- Vector-borne diseases research center, North Khorasan University of Medical Sciences, Bojnoord, Iran
| | - Sahar Ghalehaskari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Sargazi S, Mirzaei R, Mohammadi M, Rahmani M. Determination of dialkyl phthalate esters in indoor air of PVC industry: Risk assessment for human health using Monte-Carlo simulations. Heliyon 2024; 10:e35097. [PMID: 39170195 PMCID: PMC11336471 DOI: 10.1016/j.heliyon.2024.e35097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Dialkyl phthalate esters are incorporated to enhance the pliability and prevent brittleness in polyvinyl chloride (PVC) tubing. Exposure to these compounds occurs throughout human lifetimes via ingestion, inhalation, and direct skin contact. A study was conducted to evaluate concentrations of four specific phthalates-dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP)-in the indoor air of both industrial and administrative sectors within the PVC manufacturing facilities. Air sampling was conducted in the spring season at two polyethylene factories in Zahedan Industrial Park (Sistan and Baluchestan Province, Iran). The outcomes demonstrated that mean concentrations of these substances in industrial along with administrative departments 485.7 μg/m3 and 49.83 μg/m3for DMP, 807.38 μg/m3 and 30.17 μg/m3 for DEP, 849.62 μg/m3 and 37.50 μg/m3 for DBP along with 1268.08 μg/m3 and 45.50 μg/m3 for DEHP respectively. The probabilistic lifetime cancer risk (LTCR) of DEHP in the indoor air of Zahedan PVC factories for men and women was determined using the Monte Carlo simulation technique. The computed mean LTCRs of DEHP for men and women in the indoor air of industrial and administrative departments in Zahedan PVC were 1.3 × 10-3, 1.2 × 10-3and 4.7 × 10-5,4.2 × 10-5respectively. Data showed that DEHP was a potential risk to human health.
Collapse
Affiliation(s)
- Shahnaz Sargazi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Environmental Sciences and Technology Research, Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramazan Mirzaei
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mohammadi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mashaallah Rahmani
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| |
Collapse
|
6
|
Chen X, Han W, Xie H, Chen J. Release kinetics and risk assessment of additives in plastic advertising banners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171411. [PMID: 38442761 DOI: 10.1016/j.scitotenv.2024.171411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Plastic advertising banners (PABs) have been widely used for advertising and publicizing with large usage amount. The PABs are usually added with plenty of chemical additives for improving material performance, and the additives can be released during the lifetime of the PABs. However, limited knowledge is available on the composition and release of the additives in the PABs. In this study, benzenoids were found as the dominant additive categories in PABs. Release kinetics of benzenoid additives with high detection frequency and high abundance from the PABs under indoor and outdoor environments were investigated. During the 150-day release experiment, average release rates of the additives from the PABs under outdoor and indoor environments were 8.3 × 10-10 kg/m2·s and 6.3 × 10-10 kg/m2·s, respectively. The release rates of the additives were negatively related to the thickness of the PAB samples. Health risk assessment indicated that chemicals associated with PABs have potential carcinogenic risks to salesmen in the shopping malls. The risks of chemical exposure associated with PABs to consumers in the shopping malls were acceptable. This study unveils a considerable source of chemical exposure to humans.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenjing Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Zhu H, Zheng N, Chen C, Li N, An Q, Zhang W, Lin Q, Xiu Z, Sun S, Li X, Li Y, Wang S. Multi-source exposure and health risks of phthalates among university students in Northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169701. [PMID: 38159748 DOI: 10.1016/j.scitotenv.2023.169701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.
Collapse
Affiliation(s)
- Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Wu L, Li X, Fan J, Bai Y, Zhang Y, Lu H, Guo C, Xu J. Distribution characteristics, source attribution, and health risk assessment of organophosphate esters in indoor and outdoor dust from various microenvironments in Beijing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115713. [PMID: 37995619 DOI: 10.1016/j.ecoenv.2023.115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The occurrence and profiles of organophosphate esters (OPEs) were studied in indoor and outdoor dusts from various microenvironments, including forty-seven outdoor dusts from green belts, roads, parks and residence areas, seventy-seven indoor dusts from private cars, print shops, taxis, furniture shops, offices, dormitories, shopping malls and residences house in different districts in Beijing. The total concentrations (Σ12OPEs) were eighteen times higher in indoor dusts (7.14 ×102 to 2.24 ×104 ng/g) than in outdoor dusts (36.0-1.56 ×103 ng/g). OPEs concentrations in samples from taxi and private cars were obviously higher than other indoor microenvironments. Both indoor and outdoor microenvironments also showed different compositional profiles of OPEs, indicating that polyurethane foam/building materials and hydraulic fluids/plastics were the greatest contributions in different microenvironments, with chlorinated alkyl phosphates (Cl-OPEs) being the predominant compound in both indoor dust (52.1-86.5%) and outdoor dust samples (42.6-81.3%). The uncertainty was reduced by Monte Carlo simulation, and the pollution levels of 50th and 95th percentiles were employed to calculate the average daily dosage, which was then used to calculate hazard quotient (HQ) for assessing the health risks to adults and children. Results showed that OPEs were safe even at extremely consumed concentration percentile (95th) in all groups.
Collapse
Affiliation(s)
- Linlin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingpu Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yangwei Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Karamianpour J, Arfaeinia H, Ranjbar Vakilabadi D, Ramavandi B, Dobaradaran S, Fazlzadeh M, Torkshavand Z, Banafshehafshan S, Shekarizadeh H, Ahmadi S, Badeenezhad A. Accumulation, sources, and health risks of phthalic acid esters (PAEs) in road dust from heavily industrialized, urban and rural areas in southern Iran. Heliyon 2023; 9:e23129. [PMID: 38144273 PMCID: PMC10746467 DOI: 10.1016/j.heliyon.2023.e23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
In this research, a total of 51 road dust samples were collected from three districts (Asaluyeh, Bushehr, and Goshoui) in the south of Iran from April to June 2022 and analyzed for the concentration of 7 phthalic acid esters (PAEs) compounds. Asaluyeh was considered as an industrial area (near gas and petrochemical industries), Bushehr as an urban area, and Goshoui as a rural area (far from pollution sources). The PAEs concentration of the street dust samples was determined using a mass detection gas chromatography (GC/MS). The mean ± SD levels of ƩPAEs in samples from industrial, urban, and rural sources were 56.9 ± 11.5, 18.3 ± 9.64, and 5.68 ± 1.85 μg/g, respectively. The mean concentration levels of ƩPAEs was significantly (P < 0.05) higher in samples from the industrial area than urban and rural areas. The mean levels of di(2-Ethylhexyl) phthalate (DEHP) in industrial, urban, and rural areas were 20.3 ± 8.76, 4.59 ± 1.71, and 2.35 ± 0.98 μg/g, respectively. The results of the PCA analysis indicate that the likely major sources of PAEs in the road dust in the studied areas are the application of various plasticizers in industry, solvents, chemical fertilizers, waste disposal, wastewater (e.g., agricultural, domestic, and industrial), and the use of plastic films and plastic-based irrigation pipes in greenhouses. As well as, it was found that the non-cancer risk of exposure to dust-bound PAEs was higher for children than for adults. These values were <1 for both age groups (children and adults) and the exposure of inhabitants to PAEs in road dust did not pose a notable non-cancer risk. The cancer risk from exposure to DEHP in road dust was below the standard range of 10-6 in all three areas. Further studies that consider different routes of exposure to these contaminants are needed for an accurate risk assessment. Moreover, since higher PAEs level was found in industrial area, decision-makers should adopt strict strategies to control the discharging of pollution from industries to the environment and human societies.
Collapse
Affiliation(s)
- Javid Karamianpour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Dariush Ranjbar Vakilabadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Torkshavand
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Banafshehafshan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hanyeh Shekarizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sami Ahmadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, Behbahan University of Medical Sciences, Behbahan, Iran
| |
Collapse
|
10
|
Anake WU, Nnamani EA. Levels and health risk assessments of Phthalate acid esters in indoor dust of some microenvironments within Ikeja and Ota, Nigeria. Sci Rep 2023; 13:11209. [PMID: 37433814 PMCID: PMC10336085 DOI: 10.1038/s41598-023-38062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
The levels, profiles of Phthalate acid esters (PAEs) and their associated health risk in children and adults using indoor dust samples were assessed from nine (9) microenvironments in Nigeria. Six PAEs congeners were determined using Gas Chromatography-Mass Spectrometry and the human health risk assessments of PAEs exposure to children and adults were computed using the United States Environmental Protection Agency (USEPA) exposure model. The mean concentrations of the total PAEs (Σ6PAEs) in indoor dust across the study locations ranged from 1.61 ± 0.12 to 53.3 ± 5.27 μg/g with 72.0% of di-n-octyl phthalate (DnOP) as the most predominant contributor of PAEs in sample locations B, C, D, E, F and G. PAEs estimated daily intake results exceeded the USEPA value of 20 and 50 kg/bw/day for children and adults respectively in some locations. Non-carcinogenic risk exposure indicated no risk (HI < 1), while the carcinogenic risk was within the recommended threshold of 1.00 × 10-4 to 1.00 × 10-6 for benzyl butyl phthalate and bis-2-ethylhexyl phthalate. From our findings, lower levels of PAEs were observed in locations with good ventilation system. Also, the human health risk evaluation indicated indoor dust ingestion as the dominant exposure route of PAEs for both children and adults, while the children were at a higher risk of PAEs exposure. To protect children susceptible to these endocrine-disrupting pollutants, soft vinyl children's toys and teething rings should be avoided. Appropriate policies and procedures on the reduction of PAEs exposure to humans should be enacted by all stakeholders, including government regulatory agencies, industries, school administrators and the entire community.
Collapse
Affiliation(s)
- Winifred U Anake
- Department of Chemistry, College of Science and Technology, Covenant University, P.M. B 1023, Ota, Ogun State, Nigeria.
| | - Esther A Nnamani
- Department of Chemistry, College of Science and Technology, Covenant University, P.M. B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
11
|
He W, Yang H, Pu Q, Li Y. Novel control strategies for the endocrine-disrupting effect of PAEs to pregnant women in traffic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158269. [PMID: 36029816 DOI: 10.1016/j.scitotenv.2022.158269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution has become a global issue, and scientific regulation measures are urgently needed to reduce traffic pollution. Phthalates (PAEs) have been widely detected in the traffic environment; thus, they were chosen as target pollutants because of their endocrine-disrupting effects. The pathways of action and mechanisms of PAEs' endocrine-disrupting effects in pregnant women through inhalation were deduced. A novel whole-process 1C + 3D + 5R regulation system was developed to control the endocrine-disrupting effect of PAEs on pregnant women based on the cleaning production concept. (1) For source reduction, the 2D-QSAR model of endocrine-disrupting effects of PAEs in pregnant women was constructed to screen out the key influencing factors as hydrogen bond interaction and hydrophobic interaction. Based on this, a designed PAE substitute molecule with low volatility and endocrine-disrupting effects and no developmental toxicity was screened. The substitute molecule could reduce the volatilization amount of PAEs at the source by 41.76 %; (2) For process interception, selecting C-band UV light to eliminate PAEs molecules in the traffic environment can slow down 19.99 % of the endocrine-disrupting effect of PAEs molecules. The homology modeling method was used to design four kinds of green belt plant proteins with high PAEs absorption efficiency to absorb PAEs molecules in the traffic environment. Compared with the original green belt plant proteins, the absorption amount of PAEs increased by up to 96.08 %, and (3) For terminal prevention, dietary food schemes were designed to regulate PAEs' endocrine-disrupting effect on pregnant women. The optimal dietary food scheme was the simultaneous intake of glutamate, catechin and folic acid, which could reduce the adverse effect of PAEs on maternal and infants by 32.51 %. This study presents theoretical support for regulating PAE exposure to specific populations in the traffic environment and treating other pollutants in the future.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
12
|
Zhang F, Zhen H, Cheng H, Hu F, Jia Y, Huang B, Jiang M. Di-(2-ethylhexyl) phthalate exposure induces liver injury by promoting ferroptosis via downregulation of GPX4 in pregnant mice. Front Cell Dev Biol 2022; 10:1014243. [PMID: 36438553 PMCID: PMC9686828 DOI: 10.3389/fcell.2022.1014243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/25/2022] [Indexed: 10/07/2023] Open
Abstract
As one kind of endocrine disrupting chemical, di-(2-ethylhexyl) phthalate (DEHP) has been reported to cause liver dysfunction in epidemiological and experimental studies. Abnormal liver function in pregnancy is associated with adverse maternal and perinatal outcomes. Few studies have investigated the potential effect of gestational DEHP exposure on the liver in pregnant mice, and the underlying mechanisms remain unclear. In the present study, pregnant ICR mice were exposed to doses (0, 500, 1,000 mg/kg/day) of DEHP in the presence or absence of 5 mg/kg/day ferrostatin-1 (Fer-1, ferroptosis inhibitor) by oral gavage from gestation day 4 to day 18. HepG2 cells were exposed to different doses of monoethylhexyl phthalate (MEHP, a major metabolite of DEHP) in vitro. Hepatic function and pathologic changes were observed. Oxidative stress, iron metabolism, and ferroptosis-related indicators and genes were evaluated both in vivo and in vitro. The results showed that gestational DEHP exposure induced disordered liver function and hepatocyte morphology changes in pregnant mice, along with increased malondialdehyde (MDA) and Fe2+ content and decreased glutathione (GSH) levels. The expression levels of the selected ferroptosis-related genes Slc7a11, Gpx4, and Nfr2 were significantly decreased, and Ptgs2 and Lpcat3 were significantly increased. Notably, Fer-1 attenuated DEHP-induced liver injury and ferroptosis. Furthermore, MEHP exhibited a synergistic effect with RSL3 (a GPX4 inhibitor) in promoting ferroptosis in vitro. Taken together, the results demonstrated that DEHP induced liver injury and ferroptosis in pregnant mice, probably by inhibiting the GPX4 pathway through lipid peroxidation and iron accumulation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hualong Zhen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hengshun Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Fengying Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yunfei Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Binbin Huang
- MOE Key Laboratory of Population Health Across Life Cycle, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Chen H, Zhang Y, Zou M, Sun X, Huang X, Xu S. Dibutyl phthalate-induced oxidative stress and apoptosis in swine testis cells and therapy of naringenin via PTEN/PI3K/AKT signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1840-1852. [PMID: 35363423 DOI: 10.1002/tox.23531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/27/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Dibutyl phthalate (DBP) is a phthalic acid ester (PAE) that has posed a health hazard to the organisms. Naringenin (NRG) is a flavanone compound that has shown protection against several environmental chemicals through suppression of oxidative stress and activation of phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) signaling pathway. Herein, swine testis (ST) cells were treated with 1.8 μM of DBP or/and 25.39 nM of NRG for 24 h, we described the discovery path of NRG inhibition on apoptosis in DBP-exposed ST cells through targeting phosphatase and tensin homologue deleted on chromosome 10 (PTEN). We first found that the anti-apoptosis effect of NRG is dependent on mitochondrial pathway through flow cytometry and related gene/protein expression, and then we detected PI3K/AKT pathway-related gene/protein expression, and established a computational docking assay between NRG and PTEN. We found that NRG specifically binds to three basic residues (His93, Lys125, Lys128) of P loop in PTEN, as well as phosphatase domains (Asp92, His93, Cys124, Lys125, Ala126, Lys128, and Arg130) in active dephosphorylation pockets, thereby reducing PTEN level and activating PI3K/AKT signaling pathway, and further inhibiting oxidative stress and mitochondrial pathway apoptosis. Taken together, our results push forward that NRG deserves further attention as a potential antagonistic therapy against DBP through targeting PTEN to inhibit oxidative stress and activate PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowei Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Lexén J, Bernander M, Cotgreave I, Andersson PL. Assessing exposure of semi-volatile organic compounds (SVOCs) in car cabins: Current understanding and future challenges in developing a standardized methodology. ENVIRONMENT INTERNATIONAL 2021; 157:106847. [PMID: 34479137 DOI: 10.1016/j.envint.2021.106847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-volatile organic compounds (SVOCs) can be found in air, dust and on surfaces in car cabins, leading to exposure to humans via dust ingestion, inhalation, and dermal contact. This review aims at describing current understanding concerning sampling, levels, and human exposure of SVOCs from car cabin environments. To date, several different methods are used to sample SVOCs in car cabin air and dust and there are no standard operating procedures for sampling SVOCs in cars detailed in the literature. The meta-analysis of SVOCs in car cabin air and dust shows that brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) have been most frequently studied, primarily focusing on concentrations in dust. In dust, detected concentrations span over three to seven orders of magnitude, with highest median concentrations for OPFRs, followed by BFRs and, thereafter, polychlorinated biphenyls (PCBs). In air, the variation is smaller, spanning over one to three orders of magnitude, with phthalates and siloxanes having the highest median concentrations, followed by OPFRs, fluorotelomer alcohols (FTOHs) and BFRs. Assessments of human exposures to SVOCs in cars have, so far, mainly focused on external exposure, most often only studying one exposure route, primarily via dust ingestion. In order to perform relevant and complete assessments of human exposure to SVOCs in cars, we suggest broadening the scope to which SVOCs should be studied, promoting more comprehensive external exposure assessments that consider exposure via all relevant exposure routes and making comparisons of external and internal exposure, in order to understand the importance of in-car exposure as a source of SVOC exposure. We also suggest a new sampling approach that includes sampling of SVOCs in both car cabin air and dust, aiming to reduce variability in data due to differences in sampling techniques and protocols.
Collapse
Affiliation(s)
- Jenny Lexén
- Department of Chemistry, Umeå University, Umeå, Sweden; Sustainability Centre, Volvo Cars, Gothenburg, Sweden.
| | | | - Ian Cotgreave
- Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Unit Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | | |
Collapse
|
15
|
Bu Z, Hu M, Yuan F, Xu Y, Dong C, Zhang N, Mmereki D, Cao J, Zheng Y. Phthalates in Chinese vehicular environments: Source emissions, concentrations, and human exposure. INDOOR AIR 2021; 31:2118-2129. [PMID: 34288145 DOI: 10.1111/ina.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are typical air pollutants in vehicular environment since numerous synthetic materials that might contain phthalates are widely used to fabricate vehicle interiors (e.g., seat cushions, floor mats and dashboards). Hitherto, the importance of phthalate pollution in vehicular environment is not well-recognized because people spend only a small portion (around 8%) of their time in vehicles. In this study, the mass fractions of six phthalates in nine materials commonly used in Chinese vehicles (floor mats and seat cushions) were measured. Two phthalates, di-n-butyl phthalate (DnBP) and di-2-ethylhexyl phthalate (DEHP), were identified in most materials (the other phthalates were not detected). The emission characteristics of DnBP and DEHP from these materials were further investigated. The measured emission parameters were used as input for a mass-transfer model to estimate DnBP and DEHP concentrations in cabin air. Finally, the ratios between human exposures (via inhalation and dermal absorption from the gas phase) in vehicular environment and the total exposures in typical indoor environments (e.g., residences and offices) were estimated to be up to 110% and 20% for DnBP and DEHP, respectively. Based on these results, the vehicular environment might be a considerable site for human exposure to airborne phthalates.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fangzhou Yuan
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yousheng Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nan Zhang
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Daniel Mmereki
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Youqu Zheng
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
16
|
Lu H, Zhu Z. Pollution characteristics, sources, and health risk of atmospheric phthalate esters in a multi-function area of Hangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8615-8625. [PMID: 33067790 DOI: 10.1007/s11356-020-11135-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Phthalate esters (PAEs) are widely used in the manufacturing of plastics, and their demands have grown rapidly, especially in China, which will lead to much more environmental pollution of PAEs. In this study, fourteen common PAEs in ambient air were investigated during non-typhoon and typhoon seasons in a mixed multi-functional area of Hangzhou, China. The average concentrations of ∑14 PAEs in gaseous and PM2.5-bound phase (G-PAEs and P-PAEs) were 2317 ng/m3 and 128 ng/m3 during sampling period, while the mean concentrations of total PAEs in non-typhoon and typhoon seasons were 2412 ng/m3 and 2183 ng/m3, respectively. Bis(2-ethylhexyl)phthalate (DEHP) was the most abundant one, averagely accounting for 63.2% of G-PAEs and 88.3% of P-PAEs. Relative humidity showed a significant negative correlation with short-chain PAE (r = - 0.479, P < 0.01) and long-chain PAE (r = - 0.305, P < 0.05) concentrations in non-typhoon and typhoon seasons, and O3 could degrade G-PAEs through photoreaction. Source identification by the positive matrix factorization model and conditional probability function indicated that P-PAEs were mainly from the release from indoor environment (43%), PVC source (34%), construction source (12%), and industry source (11%). Air mass transport from both inland and oceans affected the PAE pollution in non-typhoon season, while its long-range transport from oceans took an important role in typhoon season. The daily inhalation intakes of PAEs for infants, teenagers, and adults were estimated, which showed that infants experienced the highest exposure risk.
Collapse
Affiliation(s)
- Hao Lu
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Zhejiang, 310018, Hangzhou, China.
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang, 310018, Hangzhou, China.
| | - Zhili Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang, 310018, Hangzhou, China
| |
Collapse
|
17
|
Chen XC, Chuang HC, Ward TJ, Tian L, Cao JJ, Ho SSH, Lau NC, Hsiao TC, Yim SH, Ho KF. Indoor, outdoor, and personal exposure to PM 2.5 and their bioreactivity among healthy residents of Hong Kong. ENVIRONMENTAL RESEARCH 2020; 188:109780. [PMID: 32554275 DOI: 10.1016/j.envres.2020.109780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Direct evidence about associations between fine particles (PM2.5) components and the corresponding PM2.5 bioreactivity at the individual level is limited. We conducted a panel study with repeated personal measurements involving 56 healthy residents in Hong Kong. Fractional exhaled nitric oxide (FeNO) levels were measured from these subjects. Out of 56 subjects, 27 (48.2%) participated in concurrent outdoor, indoor, and personal PM2.5 monitoring. Organic carbon (OC), elemental carbon (EC), particle bound-polycyclic aromatic hydrocarbons (PAHs), and phthalates were analyzed. Alteration in cell viability, lactic dehydrogenase (LDH), interleukin-6 (IL-6), and 8-isoprostane by 50 μg/mL PM2.5 extracts was determined in A549 cells in vitro. Moderate heterogeneities were shown in PM2.5 exposures and the corresponding PM2.5 bioreactivity across different sample types. Associations between the analyzed components and PM2.5 bioreactivity were assessed using the multiple regression models. Toxicological results revealed that indoor and personal exposure to OC as well as PAH compounds and their derivatives (e.g., Alkyl-PAHs, Oxy-PAHs) induced cell viability reduction and increase in levels of LDH, IL-6, and 8-isoprostane. Overall, OC in personal exposure played a dominant role in PM2.5-induced bioreactivity. Subsequently, we examined the associations of FeNO with IL-6 and 8-isoprostane levels using mixed-effects models. The results showed that per interquartile change in IL-6 and 8-isoprostane were associated with a 6.4% (p < 0.01) and 11.1% (p < 0.01) increase in FeNO levels, respectively. Our study explored the toxicological properties of chemical components in PM2.5 exposure, which suggested that residential indoors and personal OC and PAHs should be of great concern for human health. These findings indicated that further studies in inflammation and oxidative stress-related illnesses due to particle exposure would benefit from the assessment of in vitro PM2.5 bioreactivity.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; Now at: Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony J Ward
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Steven Sai-Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV, 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Ngar-Cheung Lau
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Steve Hl Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Forehead H, Barthelemy J, Arshad B, Verstaevel N, Price O, Perez P. Traffic exhaust to wildfires: PM2.5 measurements with fixed and portable, low-cost LoRaWAN-connected sensors. PLoS One 2020; 15:e0231778. [PMID: 32330173 PMCID: PMC7182254 DOI: 10.1371/journal.pone.0231778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Air pollution with PM2.5 (particulate matter smaller than 2.5 micro-metres in diameter) is a major health hazard in many cities worldwide, but since measuring instruments have traditionally been expensive, monitoring sites are rare and generally show only background concentrations. With the advent of low-cost, wirelessly connected sensors, air quality measurements are increasingly being made in places where many people spend time and pollution is much worse: on streets near traffic. In the interests of enabling members of the public to measure the air that they breathe, we took an open-source approach to designing a device for measuring PM2.5. Parts are relatively cheap, but of good quality and can be easily found in electronics or hardware stores, or on-line. Software is open source and the free LoRaWAN-based "The Things Network" the platform. A number of low-cost sensors we tested had problems, but those selected performed well when co-located with reference-quality instruments. A network of the devices was deployed in an urban centre, yielding valuable data for an extended time. Concentrations of PM2.5 at street level were often ten times worse than at air quality stations. The devices and network offer the opportunity for measurements in locations that concern the public.
Collapse
Affiliation(s)
- Hugh Forehead
- SMART Infrastructure Facility, University of Wollongong, Wollongong, Australia
- Clean Air and Urban Landscapes (CAUL) hub, Melbourne, Victoria, Australia
| | - Johan Barthelemy
- SMART Infrastructure Facility, University of Wollongong, Wollongong, Australia
| | - Bilal Arshad
- SMART Infrastructure Facility, University of Wollongong, Wollongong, Australia
| | - Nicolas Verstaevel
- SMART Infrastructure Facility, University of Wollongong, Wollongong, Australia
- Université Toulouse 1 Capitole, Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France
| | - Owen Price
- Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, Australia
| | - Pascal Perez
- SMART Infrastructure Facility, University of Wollongong, Wollongong, Australia
- Clean Air and Urban Landscapes (CAUL) hub, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Ouyang X, Xia M, Shen X, Zhan Y. Pollution characteristics of 15 gas- and particle-phase phthalates in indoor and outdoor air in Hangzhou. J Environ Sci (China) 2019; 86:107-119. [PMID: 31787175 DOI: 10.1016/j.jes.2019.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023]
Abstract
Phthalate esters (PAEs), typical pollutants widely used as plasticizers, are ubiquitous in various indoor and outdoor environments. PAEs exist in both gas and particle phases, posing risks to human health. In the present study, we chose four typical kinds of indoor and outdoor environments with the longest average human residence times to assess the human exposure in Hangzhou, including newly decorated residences, ordinary residences, offices and outdoor air. In order to analyze the pollution levels and characteristics of 15 gas- and particle-phase PAEs in indoor and outdoor environments, air and particulate samples were collected simultaneously. The total PAEs concentrations in the four types of environments were 25,396, 25,466.8, 15,388.8 and 3616.2 ng/m3, respectively. DEHP and DEP were the most abundant, and DMPP was at the lowest level. Distinct variations in the distributions of indoor/outdoor, gas/particle-phase and different molecular weights of PAEs were observed, showing that indoor environments were the main sources of PAEs pollution. While most PAEs tended to exsit in indoor sites and gas-phase, the high-molecular-weight chemicals tended to exist in the particle-phase and were mainly found in PM2.5. PAEs were more likely adsorbed by small particles, especially for the indoor environments. There existed a good correlation between the particle matter concentrations and the PAEs levels. In addition, neither temperature nor humidity had obvious effects on the distributions of the PAEs concentrations.
Collapse
Affiliation(s)
- Xingzi Ouyang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meng Xia
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueyou Shen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Yu Zhan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
20
|
Shi S, Cao J, Zhang Y, Zhao B. Emissions of Phthalates from Indoor Flat Materials in Chinese Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13166-13173. [PMID: 30372054 DOI: 10.1021/acs.est.8b03580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phthalates are ubiquitous pollutants in residential environments. Indoor airborne phthalate concentrations in Chinese residences are comparable to, or even higher than, those of western countries. However, the major sources of phthalates in Chinese residences are not well-known. In this study, we measured the phthalates emission features of 23 flat materials used in Chinese residences in the laboratory environment, including the mass fraction (wt) and the concentration in the air adjacent to the material surface ( y0). The measured wt of seven phthalates ranged from below the limit of quantitation (LOQ) to 17%, and y0 ranged from LOQ to 2 μg/m3. To evaluate the potential contributions of the studied materials to phthalates in residential air, concentrations of di-2-ethylhexyl phthalate (DEHP, a typical indoor phthalate) in air due to the emissions from selected materials in typical Chinese residential scenarios were modeled and compared with measured concentrations from the literature. The modeled gas-phase, particle-phase, and airborne concentrations of DEHP in residential air due to emissions from the selected materials were 2-65 times lower than the mean values of measured concentrations. To formulate appropriate control strategies, further efforts are needed to identify the dominant sources of phthalates in Chinese residences.
Collapse
Affiliation(s)
- Shanshan Shi
- School of Architecture and Urban Planning , Nanjing University , 210093 Nanjing , China
- Nicholas School of the Environment , Duke University , 27708 Durham , North Carolina , United States
| | - Jianping Cao
- School of Environmental Science and Engineering , Sun Yat-sen University , 510006 Guangzhou , China
- Department of Civil and Environmental Engineering , Virginia Tech , 24061 Blacksburg , Virginia , United States
| | - Yinping Zhang
- Department of Building Science, School of Architecture , Tsinghua University , 100084 Beijing , China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Tsinghua University , 100084 Beijing , China
| | - Bin Zhao
- Department of Building Science, School of Architecture , Tsinghua University , 100084 Beijing , China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Tsinghua University , 100084 Beijing , China
| |
Collapse
|
21
|
Reyes JM, Price PS. Temporal Trends in Exposures to Six Phthalates from Biomonitoring Data: Implications for Cumulative Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12475-12483. [PMID: 30272963 PMCID: PMC8862759 DOI: 10.1021/acs.est.8b03338] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phthalates are used in a wide range of consumer goods, resulting in exposures to specific phthalates that vary over time in accordance with changes in product use and how phthalates are utilized. We investigated trends in estimates of daily intake dose and several cumulative risk metrics, including the Hazard Quotient (HQ), Hazard Index (HI), and Maximum Cumulative Ratio (MCR) for six phthalates from 2005 to 2014 using metabolite biomonitoring data collected from spot urine samples under the National Health and Nutrition Examination Survey (NHANES). Over this period, there was a 2.2-fold decrease in the mean HI (0.34 to 0.15) and a 7.2-fold decrease in the percentage of participants with an HI > 1 (5.7% to 0.8%), indicating an overall decrease in combined exposure to these phthalates. Children (aged 6-11 years) had higher mean HI values than either adolescents (aged 12-19 years) or adults (aged 20+ years) during this period. MCR values were generally low and inversely correlated with HI. This indicated that a single phthalate usually drove the hazards for highly exposed individuals. However, the average value of MCR increased 1.2-fold (1.7-2.1) over this period indicating an increasing need to consider exposures to multiple phthalates in this group.
Collapse
Affiliation(s)
- Jeanette M. Reyes
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, hosted at U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Paul S. Price
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|