1
|
Yang K, Abu-Reesh IM, He Z. Domestic wastewater treatment towards reuse by "self-supplied" microbial electrochemical system assisted UV/H 2O 2 process. WATER RESEARCH 2024; 267:122504. [PMID: 39342707 DOI: 10.1016/j.watres.2024.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Domestic wastewater is a potential source of water for non-potable reuse that may help address the global water, energy, and resource challenges. Herein, a "self-supplied" process through integrating microbial electrochemical system (MES) with UV/H2O2 was developed and investigated for wastewater treatment. H2O2 was "self-supplied" from MES while the MES catholyte was "self-supplied" from the final effluent of UV/H2O2. It was found that the MES accomplished > 80 % degradation of chemical oxygen demand (COD) through bioanode degradation, and produced 18 - 20 mg L-1 H2O2 via oxygen reduction reaction in the gas diffusion cathode. The MES effluent was further treated by the UV/H2O2 process, which achieved the complete removal of recalcitrant diclofenac and > 6 log inactivation of Escherichia coli. The enhanced treatment performance of UV/H2O2 was demonstrated via a comparison with the control experiments (UV or H2O2 treatment) and benefited from ·OH generation and sulfide removal. When treating the actual wastewater, the proposed system exhibited consistent treatment performance for the organic compounds and recalcitrant contaminants, and the quality of the treated water would meet the non-potable water reuse guidelines. The results of this study encourage the further exploration of emerging contaminant removal, system coordination, and use of renewable energy by the cooperation between MES and UV/H2O2.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Jiang X, Yuan J, Zheng Z, Tao Y, Wu X. Degradation of Sulfonamides by UV/Electrochemical Oxidation and the Effects of Treated Effluents on the Bacterial Community in Surface Water. ACS OMEGA 2023; 8:28409-28418. [PMID: 37576615 PMCID: PMC10413449 DOI: 10.1021/acsomega.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
This study evaluated the effects of ultraviolet (UV) photolysis combined with electrochemical oxidation on sulfonamides (SAs) as well as its treated effluent on the bacterial community in surface water. In terms of degradation rate, the best anode material for electrochemical oxidation was Ti/RuO2-IrO2, which had the highest degradation kinetic constant compared to Ti/Ta2O5-IrO2 and Ti/Pt. Experiments showed the highest degradation rate of SAs at 8.3 pH. Similarly, increasing the current leads to stronger degradation due to the promotion of free chlorine production, and its energy consumption rate decreases slightly from 73 to 67 W h/mmol. Compared with tap water, the kinetic constants decreased by 20-62% for SAs in three different surface water samples, which was related to the decrease in free chlorine. When extending the reaction time to 24 h, the concentrations of chemical oxygen demand and total organic carbon decreased by approximately 30-40%, indicating that the SAs and their products could be mineralized. The diversity analysis showed that the effluents influenced the richness and diversity of the bacterial community, particularly in the 4 h sample. Additionally, there were 86 operational taxonomic units common to all samples, excluding the 4 h sample; significant differences were derived from changes in the Actinobacteriota and Bacteroidota phyla. The toxicity of the products might explain these changes, and these products could be mineralized, as observed in the 24 h sample. Therefore, the extension of treatment time would greatly reduce the ecological harm of treated effluent and ensure that the UV/electrochemical process is a feasible treatment option. Overall, this study provides valuable insight into the optimization and feasibility of UV/electrochemical processes as a sustainable treatment option for sulfonamide-contaminated water sources, emphasizing the importance of considering ecological impacts and the need for extended treatment times that address environmental concerns and ensuring improved water quality.
Collapse
Affiliation(s)
- Xinwei Jiang
- School
of Urban Construction, Yangtze University, Jingzhou 434023, China
| | - Julin Yuan
- Key
Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture
and Rural Affairs; Key Laboratory of Fish Health and Nutrition of
Zhejiang Province, Zhejiang Institute of
Freshwater Fisheries, Huzhou 313001, China
| | - Zhijie Zheng
- School
of Urban Construction, Yangtze University, Jingzhou 434023, China
| | - Yufang Tao
- College
of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Xiaogang Wu
- School
of Urban Construction, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
3
|
Song X, Jo C, Zhou M. Enhanced electricity generation and tetracycline removal of bioelectro-Fenton with electroactive biofilm induced by multi external resistance. CHEMOSPHERE 2022; 289:133070. [PMID: 34838838 DOI: 10.1016/j.chemosphere.2021.133070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A simple multi electric resistance mode is used to regulate electroactive anode film, which improves the electricity generation, H2O2 production and pollutants removal. This external electron transport path (double cathode with different resistance) exhibits higher H2O2 production (571.9 ± 0.1 mg m-2 h-1), tetracycline removal (71.4 ± 0.4% to 50 mg L-1), and power (615.3 ± 9.9 mW m-2 plus 680.6 ± 10.3 mW m-2), which is 75.4%, 23.1% and 1.25 times higher than that of single cathode mode. The double cathode improves the relative abundance of Geobacter (exoelectrogens), which is 9.45 times higher than that of single cathode mode. The anodic capacitance of double cathode mode is more than 10 times higher than that of single cathode mode. Electrons (generate by exoelectrogens) participate in two- (cathodic chamber) and four- (anodic chamber) electron reaction at cathode surface, and facilitates electricity generation of bioelectro-Fenton. The removal rate of double cathode mode is 342.7 mg L-1 d-1 (50 mg L-1 tetracycline) and 170.1 mg L-1 d-1 (20 mg L-1 tetracycline), which is much higher than that of reported. These results indicate that external electron transport path enhances the electrochemical activity of anode film and performance of bioelectro-Fenton. This paper provides a new power supply method for the future practical application and field experiment of bioelectrio-Fenton.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, North Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Sun C, Karuppasamy L, Gurusamy L, Yang HJ, Liu CH, Dong J, Wu JJ. Facile sonochemical synthesis of CdS/COF heterostructured nanocomposites and their enhanced photocatalytic degradation of Bisphenol-A. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation. Catalysts 2020. [DOI: 10.3390/catal10080819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A wide variety of pollutants are discharged into water bodies like lakes, rivers, canal, etc. due to the growing world population, industrial development, depletion of water resources, improper disposal of agricultural and native wastes. Water pollution is becoming a severe problem for the whole world from small villages to big cities. The toxic metals and organic dyes pollutants are considered as significant contaminants that cause severe hazards to human beings and aquatic life. The microbial fuel cell (MFC) is the most promising, eco-friendly, and emerging technique. In this technique, microorganisms play an important role in bioremediation of water pollutants simultaneously generating an electric current. In this review, a new approach based on microbial fuel cells for bioremediation of organic dyes and toxic metals has been summarized. This technique offers an alternative with great potential in the field of wastewater treatment. Finally, their applications are discussed to explore the research gaps for future research direction. From a literature survey of more than 170 recent papers, it is evident that MFCs have demonstrated outstanding removal capabilities for various pollutants.
Collapse
|