1
|
Zhou Z, Ma W, Li F, Zhong D, Zhang W, Liu L, Zhang J, Zhu Y, Su P. Deciphering the distribution and microbial secretors of extracellular polymeric substances associated antibiotic resistance genes in tube wall biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163218. [PMID: 37004772 DOI: 10.1016/j.scitotenv.2023.163218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023]
Abstract
Antibiotics and disinfectants have both been proposed to exert selective pressures on the biofilm as well as affecting the emergence and spread of antibiotic resistance genes (ARGs). However, the transfer mechanism of ARGs in drinking water distribution system (DWDS) under the coupling effect of antibiotics and disinfectants has not been completely understood. In the current study, four lab-scale biological annular reactors (BARs) were constructed to evaluate the effects of sulfamethoxazole (SMX) and NaClO coupling in DWDS and reveal the related mechanisms of ARGs proliferation. TetM was abundant in both the liquid phase and the biofilm, and redundancy analysis showed that the total organic carbon (TOC) and temperature were significantly correlated with ARGs in the water phase. There was a significant correlation between the relative abundance of ARGs in the biofilm phase and extracellular polymeric substances (EPS). Additionally, the proliferation and spread of ARGs in water phase were related to microbial community structure. Partial least-squares path modeling showed that antibiotic concentration may influence ARGs by affecting MGEs. These findings help us to better understand the diffusion process of ARGs in drinking water and provide a theoretical support for technologies to control ARGs at the front of pipeline.
Collapse
Affiliation(s)
- Ziyi Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feiyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenxuan Zhang
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518000, China
| | - Luming Liu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin 150090, China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yisong Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Su
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
| |
Collapse
|
2
|
Cruz AC, Hernández LS, Gutiérrez EJ. Cyanide-Free Copper-Silver Electroplated Coatings on Carbon Steel Exposed to 5% NaClO Bleacher. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 2022; 32:2432-2444. [PMID: 36068855 PMCID: PMC9436740 DOI: 10.1007/s11665-022-07270-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 06/12/2023]
Abstract
This work deals with the development of cyanide-free copper-silver electroplated coatings on AISI-1075 steel and its corrosion behavior under a 5% NaClO solution (commercial household bleach). A cyanide-free bath based on sodium thiosulfate was employed to obtain the silver coatings using current densities from 0.2 to 5.0 mA/cm2 and different concentrations of EDTA (additive). The evolution of the open circuit potential with time showed that silver is anodic with respect to copper, so there were no intense attacks in the silver pores. Adhesion measurements were made on both coatings by the tape test. The behavior against corrosion was evaluated by polarization resistance (Rp) in samples with the best coating adhesion. The best results were obtained with a silver coating of about 20 μm in thickness deposited on copper coating previously polished with colloidal silica. The best performance was attributed to the formation of AgCl as demonstrated by x-ray diffraction and scanning electron microscopy.
Collapse
Affiliation(s)
- Alfonso C. Cruz
- Volta Plating / American Springs, Carretera al Verde, 1494-B El Salto, Jalisco Mexico
| | - Luis S. Hernández
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona N° 550, Lomas 2a Sección, 78210 San Luis Potosí, Mexico
| | - Emmanuel J. Gutiérrez
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona N° 550, Lomas 2a Sección, 78210 San Luis Potosí, Mexico
| |
Collapse
|
3
|
Jia S, Tian Y, Li J, Chu X, Zheng G, Liu Y, Zhao W. Field study on the characteristics of scales in damaged multi-material water supply pipelines: Insights into heavy metal and biological stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127324. [PMID: 34879551 DOI: 10.1016/j.jhazmat.2021.127324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Microbial corrosion and heavy metal accumulation in metal water supply pipelines aggravate scale formation and may result in pipeline leakage or bursting events. To better understand the corrosion and corrosion products in the damaged pipes, deposits excavated from three damaged pipes after 22-26 year service periods were analyzed. Using a combination of advanced micro-mineral techniques and 16S rRNA high-throughput sequencing, the micromorphology, chemical composition, and bacterial community were investigated systematically. Unlined pipe wall scales ruptured while lined pipes leaked due to joint scales. Dendrogram correlation results demonstrated that V/As, Al/Pb, and Cr/Mn clusters exhibited co-adsorption and co-precipitation characteristics. FTIR and XRD analysis detected the presence of γ-FeOOH, α-FeOOH in loose scales, and Fe3O4 in rigid scales. Scales were colonized by various corrosion bacteria, with sulfate reducing bacteria and ammonia producing bacteria being dominant in the scales of anticorrosive and non-corrosive pipe, respectively. Tl, Ca, Al, and Pb exhibited an extremely positive correlation with Rhodocyclaceae, Ferritrophicum, Thermodesulfovibrionia, and Clostridiaceae. Al and V presented a potential Hazard Quotient risk to consumers, while Cd was potentially bioavailable in all inner scales. Overall, this study provides valuable information for the effective management and avoidance of corrosion-induced pipeline damage and heavy metal release.
Collapse
Affiliation(s)
- Shichao Jia
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jiaxin Li
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Guolei Zheng
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yunhui Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|