1
|
Wang C, Wang W, Wang C, Ren S, Wu Y, Wen M, Li G, An T. Impact of coking plant to heavy metal characteristics in groundwater of surrounding areas: Spatial distribution, source apportionment and risk assessments. J Environ Sci (China) 2025; 149:688-698. [PMID: 39181679 DOI: 10.1016/j.jes.2024.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 08/27/2024]
Abstract
Coking industry is a potential source of heavy metals (HMs) pollution. However, its impacts to the groundwater of surrounding residential areas have not been well understood. This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant. Nine HMs including Fe, Zn, Mo, As, Cu, Ni, Cr, Pb and Cd were analyzed. The average concentration of total HMs was higher in the nearby area (244.27 µg/L) than that of remote area away the coking plant (89.15 µg/L). The spatial distribution of pollution indices including heavy metal pollution index (HPI), Nemerow index (NI) and contamination degree (CD), all demonstrated higher values at the nearby residential areas, suggesting coking activity could significantly impact the HMs distribution characteristics. Four sources of HMs were identified by Positive Matrix Factorization (PMF) model, which indicated coal washing and coking emission were the dominant sources, accounted for 40.4%, and 31.0%, respectively. Oral ingestion was found to be the dominant exposure pathway with higher exposure dose to children than adults. Hazard quotient (HQ) values were below 1.0, suggesting negligible non-carcinogenic health risks, while potential carcinogenic risks were from Pb and Ni with cancer risk (CR) values > 10-6. Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters. This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater, thus facilitating the implement of HMs regulation in coking industries.
Collapse
Affiliation(s)
- Congqing Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shixing Ren
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Zhang C, Zhang D, Duan HZ, Zhao ZQ, Zhang JW, Huang XY, Ma BJ, Zheng DS. Combining metal and sulfate isotopes measurements to identify different anthropogenic impacts on dissolved heavy metals levels in river water. CHEMOSPHERE 2023; 310:136747. [PMID: 36216113 DOI: 10.1016/j.chemosphere.2022.136747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Dissolved heavy metals (DHMs) contamination has raised global concern for ecological and human health development. Weathering of sulfide-bearing ore metals can produce acidic, sulfate-rich solutions in the presence of water and oxygen (O2), and DHMs are released to deprave the river water quality. Sulfur and oxygen isotope signatures (δ34SSO4 and δ18OSO4) could identify this pyrite-derived sulfate; however, it is yet not well known whether the δ34SSO4 and δ18OSO4 values could limit the DHMs sources and illustrate anthropogenic impacts on DHMs along the river corridor. We tried to solve this problem through field works in the Luohe River and Yihe River, two tributaries of the Yellow River, China, where metal sulfide mine activities mostly occurred upstream, but agricultural and domestic behaviors concentrated in the lower plain reaches. In the Luohe River upper areas, δ34SSO4 values had negative correlations with concentrations of cadmium (Cd) (p < 0.01), nickel (Ni) (p < 0.05), molybdenum (Mo) (p < 0.01), uranium (U) (p < 0.01), and SO42- (p < 0.01). However, as the δ34SSO4 values increased downstream in the Luohe River, concentrations of copper (Cu) (p < 0.05), mercury (Hg) (p < 0.05), Ni (p < 0.05), and SO42- (p < 0.01) simultaneously elevated. The Bayesian Isotope Mixing Model (BIMM) results via δ34SSO4 values demonstrated 64.3%-65.3% of SO42- from acid mine drainage (AMD) in the Luohe River's upper reaches and 63.5%-67.7% in the Yihe River's upper reaches, and about 33% from sewage and industrial effluents in the Luohe River's lower reaches and 27% in Yihe River's lower reaches. Our results confirmed the different anthropogenic impacts on the DHMs concentrations in Luohe River and Yihe River and provided a robust method for DHMs sources appointment and pollution management in river systems.
Collapse
Affiliation(s)
- Cong Zhang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Dong Zhang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Hui-Zhen Duan
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhi-Qi Zhao
- School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
| | - Jun-Wen Zhang
- School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
| | - Xing-Yu Huang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Bing-Juan Ma
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - De-Shun Zheng
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
3
|
An Overview to Technical Solutions for Molybdenum Removal: Perspective from the Analysis of the Scientific Literature on Molybdenum and Drinking Water (1990–2019). WATER 2022. [DOI: 10.3390/w14132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A bibliometric analysis using the Scopus database was performed to investigate the research documents published from 1990 to 2019 in scientific sources related to molybdenum in drinking water and determine the quantitative characteristics of the research in this period. The results from the analysis revealed that the number of publications was maintained at a regular production of around 5 papers per year until 2009, followed by a fast linear increase in the production in the period from 2010 to 2016 (29 papers in 2016), but the scientific production regarding this topic was reduced in 2017 and 2018 to recover the production obtained in 2016 once again in 2019. The total contribution of the three most productive countries (USA, China and India, respectively) accounted for around 50% of the total number of publications. Environmental Science was the most common subject (51.4% contribution), followed by Chemistry (26.7% contribution). The research efforts targeted toward the search for technical solutions for molybdenum removal from water are not as important as the ones focused on the identification of molybdenum-polluted water bodies and the analysis of the health effects of the intake of molybdenum. Nevertheless, examples of technological treatments to remove molybdenum from the aqueous solution include the use of adsorption and ion exchange; coagulation, flocculation and precipitation followed by filtration; membrane technologies and biological treatments.
Collapse
|
4
|
Temperature Variation Characteristics and Model Optimization of Flocculation Sedimentation of Overflow Ultra-Fine Iron Tailings. MINERALS 2022. [DOI: 10.3390/min12050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to study the effect of temperature on the settling characteristics of overflow ultra-fine iron tailings, the settling velocity of overflow ultra-fine iron tailings at eight different temperatures at 10–80 °C was experimentally studied. The results show that, with the increase in slurry temperature, the flocculation settling velocity of overflow ultra-fine iron tailings increases first and then decreases. That is, when the temperature is less than 60 °C, the settling velocity of flocs increases with the increase in temperature. When the temperature is 60 °C, the settling velocity reaches the maximum 5.66 mm/s. When the temperature is more than 60 °C, the settling velocity of tailings flocs gradually decreases. In addition, with the increase in the test temperature, when the temperature is less than 60 °C, the particle size, fractal dimension, and density of tailings flocculant gradually increase, the gap of flocculant structure gradually decreases, and the floc structure becomes denser. When the temperature is higher than 60 °C, the particle size, fractal dimension, and density of flocs gradually decrease, and the gap between flocs is larger than that at 60 °C. On this basis, the temperature model of overflow ultra-fine iron tailings is established according to the analysis of particle settling process, and the settling model was optimized according to different settling areas. The mean absolute error between the optimized settling velocity and the actual velocity is 0.007, the root mean square error is 0.002, and the error is small. The theoretical calculation results are in good agreement with the experimental data, and the optimized flocculation settling model has an important role in promoting the theoretical study of the flocculation settling of such ultra-fine iron mineral particles, and can be used to guide the sedimentation and separation system to achieve good sedimentation treatment effect under the best working conditions as required.
Collapse
|