1
|
Wan C, Li Z, Deng L, Yuan Y, Wu C. Microbial population properties in the hierarchically structured aerobic granular sludge: Phenotype and genotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161164. [PMID: 36632901 DOI: 10.1016/j.scitotenv.2022.161164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Aerobic granular sludge (AGS) is a layered microbial aggregate formed by the ordered self-assembly of different microbial populations. In this study, the outer layer (OL), middle layer (ML), and the inner layer (IL) of matured AGS were obtained by circular cutting. The adhesion of microorganisms in IL was significantly higher than that in OL and ML during the famine period, while the adhesion of microorganisms in ML and OL was significantly higher than that in IL during the feast period, confirming that the formation of AGS started in the famine period, and the feast period promoted the increase of particle size. Microorganisms in the three-layer structure were highly diverse and rich in genes for cytochrome c oxidase synthesis with oxygen as the electron acceptor. G_Pseudoxanthomonas was the dominant bacterium in OL. Its spatial distribution increased gradually from the inside to the outside. G_Rhodanobacter was the dominant bacterium in IL. Its spatial distribution gradually decreased from the inside to the outside. The microorganisms in IL contained abundant pili genes. During the self-assembly process of particle formation, G_ Rhodanobaker adhered stronger than G_ Pseudoxanthomonas. The interface between aerobic and anoxic was about 0.6 mm away from the granule surface. Combined with the electron mediator properties of the extracellular polymeric substance (EPS) in granules, it was speculated that the degradation of organic substrates located in the anoxic layer relied on EPS as a mediator for long-range electron transfer, and finally transferred electrons to O2. This study provides a new viewpoint on the formation mechanism of AGS from the perspective of the ordered self-assembly of microorganisms, offering a theoretical basis for the optimal selection of culture conditions and the application of AGS technology.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liyan Deng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Yuan
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Yuan C, Sun F, Zhang J, Feng L, Tu H, Li A. Low-temperature-resistance granulation of activated sludge and the microbial responses to the granular structural stabilization. CHEMOSPHERE 2023; 311:137146. [PMID: 36347348 DOI: 10.1016/j.chemosphere.2022.137146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Completely loss of granular structural stability and reliable start-up of aerobic granular sludge (AGS) system are considered as the biggest challenges for its engineering application under seasonal temperature variation, especially extremely low temperatures. In this study, two identical sequencing batch reactors (SBR) were successfully start-up at 10 °C (R1) and 25 °C (R2), respectively, and then operated under a strategy of stepwise change of temperatures to investigate the stability of the granular sludge by examining its microbial characteristics, bis (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), extracellular polymeric substance (EPS) and sludge physiochemical properties. The results showed that AGS formed under the low temperature preferentially secrete EPS and c-di-GMP for stable granulation and improvement of its resistance to temperature changes. Meanwhile, R1 successfully obtained aerobic granulation with high biomass concentration and superior settleability, as well as high pollutant removal performance. In comparison, R2 took a longer time for granulation and was subjected to serious disintegration of AGS. The matrix structure partially formed by filamentous bacteria during the start-up stage in R1 was one of major reasons for its own superiority beyond R2 in granulation. Slow-growing organisms such as autotrophic nitrifying and Anammox bacteria, phosphorus accumulation organisms, EPS-producing genera, and c-di-GMP pathway-dependent genera, were exclusively enriched in the R1 and resulted in higher pollutants removal efficiencies and stable structure, whereas Sphaerotilus dominated in R2 that related closely with its unstable performance. Therefore, the strategy based on the stepwise change of temperatures from extremely low temperatures may be one feasible way for the sustainable application of AGS system, which is of significance to address the challenging problems of AGS applications.
Collapse
Affiliation(s)
- Chunyan Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China.
| | - Jianjun Zhang
- Shenzhen Municipal Design & Research Institute Co. Ltd., People's Republic of China
| | - Liang Feng
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Honghua Tu
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
3
|
Yan Z, Li A, Shim H, Wang D, Cheng S, Wang Y, Li M. Effect of ozone pretreatment on biogranulation with partial nitritation - Anammox two stages for nitrogen removal from mature landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115470. [PMID: 35751269 DOI: 10.1016/j.jenvman.2022.115470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Due to the extremely low C/N ratio, high concentration of ammonia nitrogen and refractory organic matter of mature landfill leachate (MLL), appropriate processes should be selected to effectively remove nitrogen and reduce disposal costs. Partial nitritation (PN) and anaerobic ammonia oxidation (AMX) have been used as the main nitrogen removal processes for MLL, and the sludge granulation in PN and AMX processes could contribute to high biological activity, good sedimentation performance, and stable resistance to toxicity. In this study, the O3-PN-AMX biogranules process was selected to effectively remove nitrogen from MLL without carbon addition and pH adjustment. Without uneconomical NH4+-N oxidation and wasting the alkalinity of MLL, ozone pretreatment achieved color removal, decreased humic- and fulvic-like acid substances, and alleviated the MLL toxicity on ammonia oxidizers. In addition, the ozonation of MLL could shorten the start-up time and improve the treatment efficiency and biogranules stability of PN and AMX processes. Efficient and stable nitritation was achieved in PN reactor without strict dissolved oxygen (DO) control, which was attributed to the unique structure of granular sludge, ozone pretreatment, and alternating inhibition of free ammonia and free nitric acid on nitrite oxidizers. Through the application of ozone pretreatment and granular sludge, the nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) of the O3-PN-AMX biogranules process reached 0.39 kg/m3/day and 85%, respectively, for the undiluted MLL treatment. This study might provide a novel and effective operation strategy of combined process for the efficient, economical, and stable nitrogen removal from MLL.
Collapse
Affiliation(s)
- Zhenyu Yan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Danyang Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuqian Cheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuexing Wang
- Shenzhen Shenshui Ecological & Environmental Technology Co., Ltd., Shenzhen, 518048, China
| | - Ming Li
- Engelbart (Beijing) Eco-Tech Co., Ltd., Beijing, 101300, China
| |
Collapse
|
4
|
Penagos DG, Victoria JR, Manrique MV. Formulation of a protocol to evaluate the aerobic granulation potential (AGP) of an inoculum. MethodsX 2022; 9:101710. [PMID: 35601957 PMCID: PMC9120046 DOI: 10.1016/j.mex.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
This paper proposes and develops a protocol for measuring the aerobic granulation potential of sludge, aiming to provide an affordable and simple alternative that can facilitate the development of aerobic granulation technology. In this sense, the protocol comprises a set of parameters and considerations that interact to create a controlled environment and stimulate cell population clustering. All of this is done in the context of procedural simplicity, low cost, and the speed at which results are obtained. The protocol is essentially a three-stage method: preparation of the substrate, adaptation of the inoculum, and implementation of the protocol. Simple parameters were measured to evaluate the granulation process: SVI, settling velocity, and morphological parameters. The protocol was validated according to optimal ranges and criteria previously established in the literature. For this purpose, an activated sludge inoculum from a domestic wastewater treatment plant was submitted to the protocol, obtaining an optimal response of the biomass (SVI5 =13.90 mL g-1, settling velocity= 25,79 m h-1, Diameter > 0.2 mm) in a relatively short time (7 d). The results show that this protocol can constitute a tool for evaluation and decision-making using traditional laboratory equipment and is applicable at different scales.
Collapse
Key Words
- AGP, Aerobic Granulation Potential
- Aerobic granules
- COD, Chemical Oxygen Demand
- DO, Dissolved Oxygen
- EPS, Extracellular Polymeric Substance
- F/M, Food Microorganism Relationship
- H/D, Height Diameter Ratio
- HRT, Hydraulic retention time
- Inoculum
- OLR, organic loading rate
- PVC, Polyvinyl Chloride
- Protocol
- SBR, Sequential Batch Reactor
- SVI, Sludge Volumetric Index
- VER, Volumetric exchange ratio
Collapse
|