1
|
Gao R, Ding H, Gu M, Chen C, Sun Y, Xin Y, Liang S, Huang X. Mild Tuning of the Microbial Habitat via Titanium-Based Pre-coagulation Mitigates Reverse Osmosis Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40391935 DOI: 10.1021/acs.est.5c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Membrane fouling remains a persistent challenge in reverse osmosis (RO) systems. Devising effective strategies to mitigate membrane fouling has become crucial for sustainable water treatment. Here, we propose a titanium-based pre-coagulation strategy for RO fouling mitigation through regulation of the microbial habitat in RO feed. The pre-coagulation performance of Ti(SO4)2 for desulfurization wastewater and the subsequent RO fouling mechanism were systematically investigated. Our findings revealed that the Ti pre-coagulation induced an acidized environment, maintained a balance between organic and inorganic depositions, and fostered a beneficial microbial community that resisted rapid fouling. The 20 day RO operations in different pre-coagulation scenarios (Ti, Al, and Ctrl) showed that the Ti group membranes maintained the highest normalized flux at 57.15%, outperforming the Ctrl and Al groups by 7.92% and 15.16%, respectively. Microbial community analyses, including taxonomic profiling and metagenomic analysis, demonstrated that Ti-based pre-coagulation reduced the dominance of extracellular polymeric substance (EPS)-secreting genera, such as Sphingopyxis, while promoting Terrimonas and Paenarthrobacter, with acid-tolerance traits and reduced EPS production. This shift mitigated biofouling by enhancing microbial balance and limiting biofilm formation. These results underscored the potential of the Ti pre-coagulation-based microbial habitat tuning strategy in enhancing RO system sustainability, offering a practical solution for improving industrial wastewater treatment.
Collapse
Affiliation(s)
- Ruonan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Haojie Ding
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yajun Sun
- Beijing Originwater Membrane Technology Company, Limited, Beijing 100097, People's Republic of China
| | - Yuchen Xin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Chen R, Zhou X, Huang L, Ji X, Chen Z, Zhu J. Effects of yeast inoculation methods on caproic acid production and microbial community during anaerobic fermentation of Chinese cabbage waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120632. [PMID: 38531129 DOI: 10.1016/j.jenvman.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
To provide a sufficient supply of electron donors for the synthesis of caproic acid, yeast fermentation was employed to increase ethanol production in the anaerobic fermentation of Chinese cabbage waste (CCW). The results showed that the caproic acid yield of CCW with ethanol pre-fermentation was 7750.3 mg COD/L, accounting for 50.2% of the total volatile fatty acids (TVFAs), which was 32.5% higher than that of the CCW without yeast inoculation. The synchronous fermentation of yeast and seed sludge significantly promoted the growth of butyric acid consuming bacterium Bacteroides, resulting in low yields of butyric acid and caproic acid. With yeast inoculation, substrate competition for the efficient ethanol conversion in the early stage of acidogenic fermentation inhibited the hydrolysis and acidfication. Without yeast inoculation, the rapid accumulation of TVFAs severely inhibited the growth of Bacteroidetes. In the reactor with ethanol pre-fermentation, the key microorganism for caproic acid production, Clostridium_sensu_stricto_12, was selectively enriched.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
3
|
Chen R, Ji X, Chen Z, Huang L, Zhu J. Regulation of hydraulic retention time on caproic acid production via two-phase anaerobic fermentation of Chinese cabbage waste with autopoietic electron donors. J Biotechnol 2024; 381:1-10. [PMID: 38176540 DOI: 10.1016/j.jbiotec.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
The effects of hydraulic retention time (HRT) on the performance of two-phase anaerobic fermentation for caproic acid production from Chinese cabbage waste (CCW) were investigated. In the electron donor phase, yeast was inoculated to achieve efficient autopoietic ethanol, providing electron donors for the chain elongation process. Shorter HRT led to drastic fluctuations in microorganisms, thus resulting in lower acid yields at HRT of 6 days. At HRT of 10 days, the balanced collaboration of various key bacteria avoided the accumulation of intermediate by-products, and the caproic acid production reached 4660 mg COD/L, which was 119.5% and 154.8% higher than that at HRTs of 6 and 14 days, respectively. At HRT of 14 days, the low ethanol loading rate resulted in ethanol excessive-oxidation to acetic acid. Acetic acid accounted for 41.5% of the total product, while the selectivity of caproic acid was only 15.3%. The main contributor to the production process of caproic acid was Caproiciproducens, while the Ruminalococcaceae also played a role in the process. This study provided a theoretical basis for the efficient production of caproic acid through continuous fermentation with autopoietic electron donors.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
4
|
Zhang K, Zhang Y, Deng M, Wang P, Yue X, Wang P, Li W. Monthly dynamics of microbial communities and variation of nitrogen-cycling genes in an industrial-scale expanded granular sludge bed reactor. Front Microbiol 2023; 14:1125709. [PMID: 36876106 PMCID: PMC9978346 DOI: 10.3389/fmicb.2023.1125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction The expanded granular sludge bed (EGSB) is a major form of anaerobic digestion system during wastewater treatment. Yet, the dynamics of microbial and viral communities and members functioning in nitrogen cycling along with monthly changing physicochemical properties have not been well elucidated. Methods Here, by collecting the anaerobic activated sludge samples from a continuously operating industrial-scale EGSB reactor, we conducted 16S rRNA gene amplicon sequencing and metagenome sequencing to reveal the microbial community structure and variation with the ever-changing physicochemical properties along within a year. Results We observed a clear monthly variation of microbial community structures, while COD, the ratio of volatile suspended solids (VSS) to total suspended solids (TSS) (VSS/TSS ratio), and temperature were predominant factors in shaping community dissimilarities examined by generalized boosted regression modeling (GBM) analysis. Meanwhile, a significant correlation was found between the changing physicochemical properties and microbial communities (p <0.05). The alpha diversity (Chao1 and Shannon) was significantly higher (p <0.05) in both winter (December, January, and February) and autumn (September, October, and November) with higher organic loading rate (OLR), higher VSS/TSS ratio, and lower temperature, resulting higher biogas production and nutrition removal efficiency. Further, 18 key genes covering nitrate reduction, denitrification, nitrification, and nitrogen fixation pathways were discovered, the total abundance of which was significantly associated with the changing environmental factors (p <0.05). Among these pathways, the dissimilatory nitrate reduction to ammonia (DNRA) and denitrification had the higher abundance contributed by the top highly abundant genes narGH, nrfABCDH, and hcp. The COD, OLR, and temperature were primary factors in affecting DNRA and denitrification by GBM evaluation. Moreover, by metagenome binning, we found the DNRA populations mainly belonged to Proteobacteria, Planctomycetota, and Nitrospirae, while the denitrifying bacteria with complete denitrification performance were all Proteobacteria. Besides, we detected 3,360 non-redundant viral sequences with great novelty, in which Siphoviridae, Podoviridae, and Myoviridae were dominant viral families. Interestingly, viral communities likewise depicted clear monthly variation and had significant associations with the recovered populations (p <0.05). Discussion Our work highlights the monthly variation of microbial and viral communities during the continuous operation of EGSB affected by the predominant changing COD, OLR, and temperature, while DNRA and denitrification pathways dominated in this anaerobic system. The results also provide a theoretical basis for the optimization of the engineered system.
Collapse
Affiliation(s)
- Kun Zhang
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Yanling Zhang
- School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
| | - Maocheng Deng
- School of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, China
| | - Pengcheng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,China National Electric Apparatus Research Institute Co., Ltd., Guangzhou, China
| | - Xiu Yue
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Liu Y, Li H, Dong S, Zhou Z, Zhang Z, Huang R, Han S, Hou J, Pan C. Dynamic changes and correlations of microbial communities, physicochemical properties, and volatile metabolites during Daqu fermentation of Taorong-type Baijiu. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Bandini F, Vaccari F, Soldano M, Piccinini S, Misci C, Bellotti G, Taskin E, Cocconcelli PS, Puglisi E. Rigid bioplastics shape the microbial communities involved in the treatment of the organic fraction of municipal solid waste. Front Microbiol 2022; 13:1035561. [PMID: 36439796 PMCID: PMC9691671 DOI: 10.3389/fmicb.2022.1035561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/03/2023] Open
Abstract
While bioplastics are gaining wide interest in replacing conventional plastics, it is necessary to understand whether the treatment of the organic fraction of municipal solid waste (OFMSW) as an end-of-life option is compatible with their biodegradation and their possible role in shaping the microbial communities involved in the processes. In the present work, we assessed the microbiological impact of rigid polylactic acid (PLA) and starch-based bioplastics (SBB) spoons on the thermophilic anaerobic digestion and the aerobic composting of OFMSW under real plant conditions. In order to thoroughly evaluate the effect of PLA and SBB on the bacterial, archaeal, and fungal communities during the process, high-throughput sequencing (HTS) technology was carried out. The results suggest that bioplastics shape the communities' structure, especially in the aerobic phase. Distinctive bacterial and fungal sequences were found for SBB compared to the positive control, which showed a more limited diversity. Mucor racemosus was especially abundant in composts from bioplastics' treatment, whereas Penicillium roqueforti was found only in compost from PLA and Thermomyces lanuginosus in that from SBB. This work shed a light on the microbial communities involved in the OFMSW treatment with and without the presence of bioplastics, using a new approach to evaluate this end-of-life option.
Collapse
Affiliation(s)
- Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Mariangela Soldano
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Sergio Piccinini
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Chiara Misci
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| |
Collapse
|
7
|
Lv J, Yao L, Liang Y, He S, Zhang S, Shi T, Gong L, Li H, Li Y, Yu T, Zhang Y. Synergistic effect of yeast integrated with alkyl polyglucose for short-chain fatty acids production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 364:128092. [PMID: 36229007 DOI: 10.1016/j.biortech.2022.128092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
An efficient strategy for short-chain fatty acid (SCFA) production from sludge anaerobic fermentation was proposed with the combination of yeast and alkyl polyglucose (APG). It revealed that the synergetic effect of yeast and APG could boost the SCFA concentration to the maximum value of 2800.34 mg COD/L within 9 days at 0.20 g/g suspended solids (SS) yeast and 0.20 g/g SS APG, which was significantly higher than that of its counterparts. Interestingly, the sludge solubilization, the biodegradability of fermentation substrate, as well as the acidification of hydrolyzed products, was evidently improved in the coexistence of APG and yeast. The activities of hydrolytic enzymes and acetate kinase were also stimulated, whereas the coenzyme F420 was inhibited. The synergetic effect of yeast and APG used in this work enriches the study of carbon resource recovery from sludge anaerobic fermentation.
Collapse
Affiliation(s)
- Jinghua Lv
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China.
| | - Lirong Yao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Yuge Liang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Siqi He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Shujia Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Tianyu Shi
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Li Gong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Hailong Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Tonghuan Yu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| |
Collapse
|
8
|
Kumar Awasthi M, Paul A, Kumar V, Sar T, Kumar D, Sarsaiya S, Liu H, Zhang Z, Binod P, Sindhu R, Kumar V, Taherzadeh MJ. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: A review. BIORESOURCE TECHNOLOGY 2022; 344:126193. [PMID: 34710613 DOI: 10.1016/j.biortech.2021.126193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this review article, discuss the many ways utilized by the dairy sector to treat pollutants, emphasizing their influence on the quality and efficiency with which contamination is removed. It focuses on biotechnology possibilities for valorizing dairy waste in particular. The findings revealed that dairy waste may be treated using physicochemical, biological, and biotechnological techniques. Notably, this article highlighted the possibility of dairy waste being used as a feedstock not only for the generation of biogas, bioethanol, biohydrogen, microbial fuel cells, lactic acid, and fumaric acid via microbial technology but also for the production of biooil and biochar by pyrolysis. In addition, this article critically evaluates the many treatment techniques available for recovering energy and materials from dairy waste, their combinations, and implementation prospects. Valorization of dairy waste streams presents an opportunity to extend the dairy industry's presence in the fermented functional beverage sector.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Anindita Paul
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Taner Sar
- (f)Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | |
Collapse
|