1
|
Su P, He Y, Wang J, Feng Y, Wan Q, Zhang Y, Pang Z. Green separation and decomposition of crystalline silicon photovoltaic module's backsheet by using ethanol. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:144-153. [PMID: 38471252 DOI: 10.1016/j.wasman.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The treatment and recycling of discarded crystalline silicon photovoltaic modules (c-Si PV modules) has become a research focus, but few research have paid attention to the standardized treatment of c-Si PV module's fluorinated backsheet. Improper management of fluorinated backsheet can pose ecological and human health risks. Therefore, this study presents a novel method for processing the backsheet. The proposed approach entailed the utilization of ethanol (CH3CH2OH) to separate the backsheet from the PV module. Subsequently, the separated backsheet underwent decomposition using an alkaline ethanol (NaOH-CH3CH2OH) solution. Finally, the backsheet was recovered in the form of terephthalic acid (TPA) with a purity of 97.47 %. This recovered TPA can then serve as a valuable raw material for producing new backsheets, fostering a closed-loop material circulation. Experimental results demonstrate that immersing the PV module in a 75 % CH3CH2OH-H2O solution at a temperature of 343 K for 30 min achieved 100 % separation of the backsheet. Furthermore, subjecting the separated backsheet to a 60 min reaction in an NaOH-CH3CH2OH solution with a temperature of 343 K and a NaOH concentration of 1.0 mol/L achieved complete decomposition. The reaction mechanism was analyzed through characterization methods such as SEM/EDS, NMR, FTIR and XRD. This method is efficient, non-toxic organic reagent-free and environmentally friendly, so it holds significant potential for further development in the field of c-Si PV module recycling.
Collapse
Affiliation(s)
- Pengxin Su
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yaqun He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| | - Jie Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yi Feng
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Qiuyue Wan
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zhang
- School of Foreign Studies, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Zhibo Pang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
2
|
Fu Z, Zhang YS, Ji G, Li A. The interactions between mixed waste from discarded surgical masks and face shields during the degradation in supercritical water. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132338. [PMID: 37604037 DOI: 10.1016/j.jhazmat.2023.132338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
The widespread use of surgical masks made of polyolefin and face shields made of polyester during pandemics contributes significantly to plastic pollution. An eco-friendly approach to process plastic waste is using supercritical water, but the reaction of mixed polyolefin and polyester in this solvent is not well understood, which hinders practical applications. This study aimed to investigate the reaction of waste surgical masks (SM) and face shields (FS) mixed in supercritical water. Results showed that the optimal treatment conditions were 400 °C and 60 min, achieving a liquid oil yield of 823.03 mg·g-1 with 25 wt% FS. The interaction between polypropylene (PP), polyethylene terephthalate (PET), and iron (Fe) in SM and FS mainly determined the production of liquid oil products such as olefins and benzoic acid. The methyl-branched structure of PP enhanced PET hydrolysis, resulting in higher production of terephthalic acid (TPA). The degradation of PP was facilitated by the acidic environment created by TPA and benzoic acid in the reaction. Moreover, the hydrolysis of PET produced carboxylic acid, which coordinated with Fe3+ to form Fe-H that catalyzed the polymerization of small olefins, contributing to higher selectivity for C9 olefins. Therefore, this study provides valuable insights into the degradation mechanism of mixed PPE waste in supercritical water and guidance for industrial treatment.
Collapse
Affiliation(s)
- Zegang Fu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ye Shui Zhang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Guozhao Ji
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Aimin Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
3
|
Zeng WY, Huang M, Fu M. Solid-phase extraction and separation of indium with P 2O 4-UiO-66-MOFs (di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks). J Environ Sci (China) 2023; 127:833-843. [PMID: 36522111 DOI: 10.1016/j.jes.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Compared with the traditional liquid-liquid extraction method, solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience, free of organic solvents, and fully exposed activity. In this study, P2O4 (di-2-ethylhexyl phosphoric acid) was chemically modified by using UiO-66 to form the solid-phase extraction agent P2O4-UiO-66-MOFs (di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks) to adsorb In(III). The results show that the Zr of UiO-66 bonds with the P-OH of P2O4 to form a composite P2O4-UiO-66-MOF, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption process of indium on P2O4-UiO-66-MOFs followed pseudo first-order kinetics, and the adsorption isotherms fit the Langmuir adsorption isotherm model. The adsorption capabilities can reach 192.8 mg/g. After five consecutive cycles of adsorption-desorption-regeneration, the indium adsorption capacity by P2O4-UiO-66-MOFs remained above 99%. The adsorption mechanism analysis showed that the P=O and P-OH of P2O4 molecules coated on the surface of P2O4-UiO-66-MOFs participated in the adsorption reaction of indium. In this paper, the extractant P2O4 was modified into solid P2O4-UiO-66-MOFs for the first time. This work provides a new idea for the development of solid-phase extractants for the recovery of indium.
Collapse
Affiliation(s)
- Wan-Yi Zeng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minzhong Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Minglai Fu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
4
|
Eagleton A, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, Mahle JJ, Peterson GW, Frederick BG, Mirica KA. Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal-Organic Framework. J Am Chem Soc 2022; 144:23297-23312. [PMID: 36512516 PMCID: PMC9801431 DOI: 10.1021/jacs.2c05510] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
This paper describes a novel synthetic approach for the conversion of zero-valent copper metal into a conductive two-dimensional layered metal-organic framework (MOF) based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form Cu3(HHTP)2. This process enables patterning of Cu3(HHTP)2 onto a variety of flexible and porous woven (cotton, silk, nylon, nylon/cotton blend, and polyester) and non-woven (weighing paper and filter paper) substrates with microscale spatial resolution. The method produces conductive textiles with sheet resistances of 0.1-10.1 MΩ/cm2, depending on the substrate, and uniform conformal coatings of MOFs on textile swatches with strong interfacial contact capable of withstanding chemical and physical stresses, such as detergent washes and abrasion. These conductive textiles enable simultaneous detection and detoxification of nitric oxide and hydrogen sulfide, achieving part per million limits of detection in dry and humid conditions. The Cu3(HHTP)2 MOF also demonstrated filtration capabilities of H2S, with uptake capacity up to 4.6 mol/kgMOF. X-ray photoelectron spectroscopy and diffuse reflectance infrared spectroscopy show that the detection of NO and H2S with Cu3(HHTP)2 is accompanied by the transformation of these species to less toxic forms, such as nitrite and/or nitrate and copper sulfide and Sx species, respectively. These results pave the way for using conductive MOFs to construct extremely robust electronic textiles with multifunctional performance characteristics.
Collapse
Affiliation(s)
- Aileen
M. Eagleton
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Michael Ko
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Robert M. Stolz
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Nataliia Vereshchuk
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Adelaide M. Levenson
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Connie Huang
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Katherine C. MacVeagh
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Akbar Mahdavi-Shakib
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - John J. Mahle
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Gregory W. Peterson
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Brian G. Frederick
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| |
Collapse
|