1
|
Figueiredo D, Vicente ED, Gonçalves C, Lopes I, Alves CA, Oliveira H. PM 10 exposure in beauty salons: impact on A549 cell viability, cell cycle, oxidative stress, and mutagenicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104683. [PMID: 40158786 DOI: 10.1016/j.etap.2025.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Beauty salons are unique indoor environments where elevated PM10 levels may arise from frequent use of personal care and cosmetic products, potentially exposing salon workers and clients to harmful chemicals. This study aimed to assess the biological effects of PM10 collected indoors and outdoors of a beauty salon, as well as the mutagenic potential of PM10-bound polycyclic aromatic hydrocarbons (PAHs). Using the MTT test, a dose-dependent decrease in cell viability was observed in human alveolar adenocarcinoma cells (A549) exposed to PM10, with indoor samples causing more pronounced effects than outdoor and background air. Indoor PM10 exposure also increased intracellular reactive oxygen species (ROS) and caused an arrest in the G1 phase of cell cycle. These biological responses were correlated with the concentrations of various compounds, including organic carbon (OC), aliphatic carboxylic acids, dicarboxylic acids, and alkyl esters of fatty acids. No mutagenic effects were observed for all PAH samples tested using the Salmonella typhimurium strain TA98. The findings suggest that beauty salons might have elevated levels of PM10, capable of inducing cytotoxic and oxidative stress-related effects and cell cycle disruption. Although no mutagenic activity was detected, the presence of harmful chemicals highlights potential health risks for workers and clients.
Collapse
Affiliation(s)
- Daniela Figueiredo
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal; Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Estela D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cátia Gonçalves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Isabel Lopes
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Célia A Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
2
|
Vicente ED, Figueiredo D, Alves C. Toxicity of particulate emissions from residential biomass combustion: An overview of in vitro studies using cell models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171999. [PMID: 38554951 DOI: 10.1016/j.scitotenv.2024.171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This article aims to critically review the current state of knowledge on in vitro toxicological assessments of particulate emissions from residential biomass heating systems. The review covers various aspects of particulate matter (PM) toxicity, including oxidative stress, inflammation, genotoxicity, and cytotoxicity, all of which have important implications for understanding the development of diseases. Studies in this field have highlighted the different mechanisms that biomass combustion particles activate, which vary depending on the combustion appliances and fuels. In general, particles from conventional combustion appliances are more potent in inducing cytotoxicity, DNA damage, inflammatory responses, and oxidative stress than those from modern appliances. The sensitivity of different cell lines to the toxic effects of biomass combustion particles is also influenced by cell type and culture conditions. One of the main challenges in this field is the considerable variation in sampling strategies, sample processing, experimental conditions, assays, and extraction techniques used in biomass burning PM studies. Advanced culture systems, such as co-cultures and air-liquid interface exposures, can provide more accurate insights into the effects of biomass combustion particles compared to simpler submerged monocultures. This review provides critical insights into the complex field of toxicity from residential biomass combustion emissions, underscoring the importance of continued research and standardisation of methodologies to better understand the associated health hazards and to inform targeted interventions.
Collapse
Affiliation(s)
- E D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - D Figueiredo
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Silva TD, Alves C, Oliveira H, Duarte IF. Biological Impact of Organic Extracts from Urban-Air Particulate Matter: An In Vitro Study of Cytotoxic and Metabolic Effects in Lung Cells. Int J Mol Sci 2023; 24:16896. [PMID: 38069233 PMCID: PMC10706705 DOI: 10.3390/ijms242316896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Atmospheric particulate matter (PM) with diameters below 10 µm (PM10) may enter the lungs through inhalation and are linked to various negative health consequences. Emergent evidence emphasizes the significance of cell metabolism as a sensitive target of PM exposure. However, the current understanding of the relationship between PM composition, conventional toxicity measures, and the rewiring of intracellular metabolic processes remains limited. In this work, PM10 sampled at a residential area (urban background, UB) and a traffic-impacted location (roadside, RS) of a Portuguese city was comprehensively characterized in terms of polycyclic aromatic hydrocarbons and plasticizers. Epithelial lung cells (A549) were then exposed for 72 h to PM10 organic extracts and different biological outcomes were assessed. UB and RS PM10 extracts dose-dependently decreased cell viability, induced reactive oxygen species (ROS), decreased mitochondrial membrane potential, caused cell cycle arrest at the G0/G1 phase, and modulated the intracellular metabolic profile. Interestingly, the RS sample, richer in particularly toxic PAHs and plasticizers, had a greater metabolic impact than the UB extract. Changes comprised significant increases in glutathione, reflecting activation of antioxidant defences to counterbalance ROS production, together with increases in lactate, NAD+, and ATP, which suggest stimulation of glycolytic energy production, possibly to compensate for reduced mitochondrial activity. Furthermore, a number of other metabolic variations hinted at changes in membrane turnover and TCA cycle dynamics, which represent novel clues on potential PM10 biological effects.
Collapse
Affiliation(s)
- Tatiana D. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Célia Alves
- Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Figueiredo D, Vicente ED, Vicente A, Gonçalves C, Lopes I, Alves CA, Oliveira H. Toxicological and Mutagenic Effects of Particulate Matter from Domestic Activities. TOXICS 2023; 11:505. [PMID: 37368605 DOI: 10.3390/toxics11060505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
People spend most of their time indoors, particularly in their houses where daily activities are carried out, enhancing particulate matter (PM) emissions with consequent adverse health impacts. This study intended to appraise the toxicological and mutagenic responses of particulate matter with a diameter less than 10 μm (PM10) released from cooking and ironing activities under different conditions. The cytotoxicity of the PM10 total organic extracts was tested in A549 cells using the WST-8 and the lactate dehydrogenase (LDH) assays, while the interference in cell cycle dynamics and reactive oxygen species (ROS) production was analysed by flow cytometry. The S. typhimurium TA98 and TA100 Ames tester strains with and without metabolic activation were employed to determine the mutagenic potential of the PM10-bound polycyclic aromatic hydrocarbons (PAHs). PM10 organic extracts decreased the metabolic activity of A549 cells; however, no effects in the LDH release were observed. An increase in ROS levels was registered only for cells treated with PM10 at IC20 from steam ironing, in low ventilation conditions, while cell cycle dynamics was only affected by exposure to PM10 at IC20 from frying horse mackerel and grilling boneless pork strips. No mutagenic effects were observed for all the PM10-bound PAHs samples.
Collapse
Affiliation(s)
- Daniela Figueiredo
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Estela D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Gonçalves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Célia A Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Su Y, Zhao Q, Du J, Liu C, Jiang X, Wei W, Tong X. Pickering emulsion-enhanced Vibrio fischeri assay for ecotoxicity assessment of highly hydrophobic polycyclic aromatic hydrocarbons. CHEMOSPHERE 2023; 313:137470. [PMID: 36493886 DOI: 10.1016/j.chemosphere.2022.137470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Accurate ecotoxicity assessment of contaminated soil is critical to public health, and the luminescent bacteria (Vibrio fischeri) method is the most commonly used. Hydrophobic compounds such as polycyclic aromatic hydrocarbons (PAHs) in soil cannot be in contact with luminescent bacteria due to their low water solubility so that the luminescence inhibitory effect cannot be observed. The underestimated biological toxicity makes the test unreliable and en-dangers public health and safety. The commonly adopted improved method of adding cosolvents has limited effect, it was only effective for low-hydrophobicity chemicals and could not be used for ecotoxicity evaluation of high-hydrophobicity chemicals. Therefore, we constructed Pickering emulsions using luminescent bacteria modified with n-dodecanol in which PAHs were dissolved in the oil phase, n-tetradecane. Then the luminescent bacteria could tightly adhere to the oil-water interface and contact PAHs. As a result, their bioluminescence was suppressed to varying degrees depending on the chemical species and concentrations. With no solubility limitation, highly hydrophobic PAHs could even completely inhibit bacterial bioluminescence, hence the toxicity information was accurately displayed and the median effect concentration (EC50) values could be calculated. This Pickering emulsion-based method was successfully applied for the accurate ecotoxicity evaluation of highly hydrophobic PAHs and soil samples contaminated with them, which all previous methods could not achieve. This method overcomes the problem of ecotoxicity evaluation of hydrophobic compounds, and has great potential for practical application, whether it is pure chemicals or various real samples from the ecological environment.
Collapse
Affiliation(s)
- Yuchen Su
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Qianghong Zhao
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Jiayin Du
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Chunlan Liu
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Xuemei Jiang
- Bioengineering College, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| | - Weili Wei
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China.
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China.
| |
Collapse
|