1
|
Zhu Q, Jin S, Gang DD, Yang F. A review in analytical progress for house dust mite allergens. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0177. [PMID: 40074681 DOI: 10.1515/reveh-2024-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
House dust mite (HDM) allergens are one of the most important causes of allergenic diseases in the indoor environment. The World Health Organization (WHO) has defined risk thresholds for Group I HDM allergens as a concentration of 2 and 10 μg/mL in dust for producing asthma risk and polar asthma attacks, respectively. Continuing exposure to high concentrations of HDM allergens greatly increases the risk of developing allergic diseases. Therefore, it's necessary to determine the exposure levels of HDM allergens to estimate the risk. So, various approaches have been developed to directly or indirectly detect HDM allergens in the environment. This paper overviews the developmental progress of HDM allergen detection and introduces the principle of HDM allergen detection methods, including semi-quantitative radioallergosorbent test (RAST), ACAREX test, dot immunobinding assay (DIBA), radioimmunoassay (RIA) which combines the high sensitivity and accuracy, enzyme-linked immunosorbent assay (ELISA) with high accuracy, fluorescent multiple arrays which can simultaneously detect multiple HDM allergens, polymerase chain reaction (PCR), and liquid chromatograph-mass spectrometer (LC-MS) with high sensitivity and accuracy. The paper provides an overall understanding of the development of HDM allergen detection methods and guidance for choosing an appropriate method to detect HDM allergens.
Collapse
Affiliation(s)
- Qiling Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, 12404 South-Central Minzu University , Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, 12404 South-Central Minzu University , Wuhan, China
| | - Daniel D Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| |
Collapse
|
2
|
Li A, Qiu X, Jiang X, Shi X, Liu J, Cheng Z, Chai Q, Zhu T. Alteration of the health effects of bioaerosols by chemical modification in the atmosphere: A review. FUNDAMENTAL RESEARCH 2024; 4:463-470. [PMID: 38933216 PMCID: PMC11197536 DOI: 10.1016/j.fmre.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/12/2023] [Accepted: 10/13/2023] [Indexed: 06/28/2024] Open
Abstract
Bioaerosols are a subset of important airborne particulates that present a substantial human health hazard due to their allergenicity and infectivity. Chemical reactions in atmospheric processes can significantly influence the health hazard presented by bioaerosols; however, few studies have summarized such alterations to bioaerosols and the mechanisms involved. In this paper, we systematically review the chemical modifications of bioaerosols and the impact on their health effects, mainly focusing on the exacerbation of allergic diseases such as asthma, rhinitis, and bronchitis. Oxidation, nitration, and oligomerization induced by hydroxyl radicals, ozone, and nitrogen dioxide are the major chemical modifications affecting bioaerosols, all of which can aggravate allergenicity mainly through immunoglobulin E pathways. Such processes can even interact with climate change including the greenhouse effect, suggesting the importance of bioaerosols in the future implementation of carbon neutralization strategies. In summary, the chemical modification of bioaerosols and the subsequent impact on health hazards indicate that the combined management of both chemical and biological components is required to mitigate the health hazards of particulate air pollution.
Collapse
Affiliation(s)
- Ailin Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhen Cheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qianqian Chai
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Tian J, Yang F. Site-specific tyrosine nitration of group 1 allergens of house dust mite Dermatophagoides farinae (der f 1) and Dermatophagoides pteronyssinus (der p 1) in indoor dusts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121716. [PMID: 37142204 DOI: 10.1016/j.envpol.2023.121716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Nitration can enhance the allergenicity of proteins. The nitration status of house dust mite (HDM) allergens in indoor dusts, however, remains to be elucidated. In the study, site-specific tyrosine nitration degrees of the two important HDM allergens Der f 1 and Der p 1 in indoor dust samples were investigated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The measured concentrations of native and nitrated allergens in the dusts were in the range of 0.86-29 μg g-1 for Der f 1 and from below the detection limit to 29 μg g-1 for Der p 1. Site-specific analysis revealed that all ten tyrosine residues in Der f 1 and Der p 1 were nitrated to different degrees in the investigated samples. The preferred nitration sites were Y56 in Der f 1 and Y37 in Der p 1 with the nitration degrees of 7.6-84% and 17-96% among the detected tyrosine residues, respectively. The measurements reveal high site-specific nitration degrees for tyrosine in Der f 1 and Der p 1 detected in the indoor dust samples. Further investigations are required to find out if the nitration really aggravates the health effects of HDM allergens and if the effects are tyrosine site-dependent.
Collapse
Affiliation(s)
- Jingyi Tian
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
4
|
Ogino N, Ogino K, Eitoku M, Suganuma N, Nagaoka K. Filter blot method: A simple method for measuring 3-nitrotyrosine in proteins of atmospheric particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121677. [PMID: 37085106 DOI: 10.1016/j.envpol.2023.121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Air pollutants, such as nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM), have been epidemiologically reported to contribute to the onset and exacerbation of asthma. We have previously shown that several proteins in atmospheric PM are allergenic in mouse asthma models and that these proteins are nitrated by atmospheric NO2 and O3 in chemical reactions. Based on these results, the amount of 3-nitrotyrosine (3-NT) in atmospheric PM could be an air pollution marker integrating NO2, O3, and PM. We established a method to measure 3-NT by high-performance liquid chromatography electrochemical detection (HPLC-ECD). Although this method is accurate, it requires a filter treatment process, which is time-consuming and costly for an environmental monitoring tool, in which many samples are measured simultaneously. Therefore, in this study, we investigated a simple immunoblotting method in which atmospheric PM proteins were directly transferred to a polyvinylidene fluoride (PVDF) membrane and measured using an anti-3-NT antibody (the filter blot method). The 3-NT value obtained from this method was significantly correlated (r = 0.809, p < 0.001) with that of the HPLC-ECD method, with a detection power of 0.1 μg/mL for tyrosine nitrated bovine serum albumin equivalents. Multiple regression analysis using the filter blot method showed that the amount of 3-NT in atmospheric PM was significantly associated with the published environmental measurements of O3 and PM in the region. Therefore, the filter blot method may be useful for the environmental monitoring of 3-NT in atmospheric PM.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Department of Environmental Medicine, Faculty of Medicine, Kochi University, Kohasu, Oko-cho, Nangoku, Japan
| | - Keiki Ogino
- Department of Environmental Medicine, Faculty of Medicine, Kochi University, Kohasu, Oko-cho, Nangoku, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Faculty of Medicine, Kochi University, Kohasu, Oko-cho, Nangoku, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Faculty of Medicine, Kochi University, Kohasu, Oko-cho, Nangoku, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, 790-8578, Ehime, Japan.
| |
Collapse
|