1
|
Lei T, Xiang W, Zhao B, Hou C, Ge M, Wang W. Advances in analysis of atmospheric ultrafine particles and application in air quality, climate, and health research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175045. [PMID: 39067589 DOI: 10.1016/j.scitotenv.2024.175045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
There is growing interest in the contribution of ultrafine particles to air quality, climate, and human health. Ultrafine particles are of central significance for the influence of radiative forcing of climate change by involving in the formation of clouds and precipitation. Moreover, exposure to ultrafine particles can enhance the disease burden. The determination of those effects of ultrafine particles strongly depends on their chemical composition and physicochemical properties. This review focuses on the advanced techniques for the characterization of chemical composition and physicochemical properties of ultrafine particles in the past five years. The current analytical methodologies are broadly classified into electron and X-ray microscopy, optical spectroscopy and microscopy, electrical mobility, and mass spectrometry, and then described and discussed its operation principle, advantages, and limitations. Besides measurements, application of the state-of-the-art techniques is briefly reviewed to help us to promote a better understanding of atmospheric ultrafine particles relevant to air quality, climate, and health.
Collapse
Affiliation(s)
- Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Hou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Yang B, Xie Z, Liu J, Gui H, Zhang J, Wei X, Fan Z, Zhang D. Investigating the effect of volatility on the hygroscopicities of acetate nanoparticle aerosols by surface plasmon resonance microscopy. J Environ Sci (China) 2024; 138:167-178. [PMID: 38135385 DOI: 10.1016/j.jes.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 12/24/2023]
Abstract
Under high relative humidity (RH) conditions, the release of volatile components (such as acetate) has a significant impact on the aerosol hygroscopicity. In this work, one surface plasmon resonance microscopy (SPRM) measurement system was introduced to determine the hygroscopic growth factors (GFs) of three acetate aerosols separately or mixed with glucose at different RHs. For Ca(CH3COO)2 or Mg(CH3COO)2 aerosols, the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH, which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide (Ca(OH)2 or Mg(OH)2) under high RH conditions. Then the third calculated GF (using the Zdanovskii-Stokes-Robinson method) for Ca(CH3COO)2 or Mg(CH3COO)2 in bicomponent aerosols with 1:1 mass ratio were 3.20% or 5.33% lower than that of the first calculated GF at 90% RH. The calculated results also showed that the hygroscopicity change of bicomponent aerosol was negatively correlated with glucose content, especially when the mass ratio of Mg(CH3COO)2 to glucose was 1:2, the GF at 90% RH only decreased by 4.67% after three cyclic humidification. Inductively coupled plasma atomic emission spectrum (ICP-AES) based measurements also indicated that the changes of Mg2+concentration in bicomponent was lower than that of the single-component. The results of this study reveal thatduring the efflorescence transitions of atmospheric nanoparticles, the organic acids diffusion rate may be inhibited by the coating effect of neutral organic components, and the particles aging cycle will be prolonged.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Zhibo Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jianguo Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huaqiao Gui
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiaoshi Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiuli Wei
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zetao Fan
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Douguo Zhang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Yang B, Xie Z, Liu J, Gui H, Zhang J, Wei X, Wang J, Fan Z, Zhang D. Investigating the hygroscopicities of calcium and magnesium salt particles aged with SO 2 using surface plasmon resonance microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161588. [PMID: 36642280 DOI: 10.1016/j.scitotenv.2023.161588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The hygroscopicities of calcium and magnesium salts strongly affect the environment and climate, but the aging products of these salts at high relative humidities (RHs) are still poorly understood. In this study, surface plasmon resonance microscopy (SPRM) was used to determine the hygroscopic growth factors (GFs) of Ca(NO3)2 and Mg(NO3)2 separately or mixed with galactose at different mass ratios at different RHs before and after aging. For all particles, the measured GFs showed no indication of deliquescence across the range of RHs tested, and overall hygroscopicity was clearly lower after than before aging. The Ca(NO3)2 and Mg(NO3)2 GFs at 90 % RH were 1.80 and 1.66, respectively, before aging and 1.33 and 1.42, respectively, after 4 h aging, meaning aging decreased the GFs by 26.11 % and 14.46 %, respectively. Aging decreased the hygroscopicity because insoluble or sparingly soluble substances (CaSO3, CaSO4, MgSO3) formed and strongly changed the overall hygroscopicity. For bicomponent aerosols with different mass ratios, the GFs (calculated using the Zdanovskii-Stokes-Robinson method) of the other components except galactose at 90 % RH after 1 h aging were all lower, respectively, than the measured GFs of pure Ca(NO3)2 and Mg(NO3)2 after aging for 1 h, especially with the mass ratio of 1:2, their GFs have decreased by 14.63 % and 7.50 %, respectively. Subsequently, Ion chromatograms indicated that the peak area ratio of SO42- to NO3- ratios were higher for the aged bicomponent particles than aged single-component particles, possibly because adding galactose improved the gas-liquid state stability during drying after the aging process and therefore promoted nitrate consumption and sulfate formation. The results indicated that organic components may play important roles in heterogeneous reactions between trace gases and multicomponent aerosols and should be considered in evaluating the impacts on submicron aerosol composition of high atmospheric SO2 concentrations at high humidities.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Zhibo Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jianguo Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huaqiao Gui
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiaoshi Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiuli Wei
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jie Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zetao Fan
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Douguo Zhang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|