1
|
Cheng W, Li X, Han C, Liu Y, Xue A, Dong H, Li X, Shao C, Liu Y. Room-Temperature Wearable Chemiresistor Based on a Flexible Inorganic Photoactive Anatase-Rutile TiO 2/Yttria-Stabilized Zirconia Nanofiber Network. ACS Sens 2025; 10:2125-2135. [PMID: 40063984 DOI: 10.1021/acssensors.4c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Wearable gas sensors offer remarkable advantages in terms of portability and real-time monitoring, rendering them highly promising for various applications such as environmental detection, health monitoring, and early disease diagnosis. However, the most widely used oxide semiconductor gas sensors encounter substantial challenges in achieving mechanical flexibility and room-temperature gas detection due to their inherent rigidity, brittleness, and reliance on high operating temperatures. Herein, an all-inorganic wearable oxide semiconductor gas sensor is fabricated by depositing the anatase/rutile TiO2 (TiO2-A/R) homojunction on a flexible yttria-stabilized zirconia (YSZ) nanofiber substrate using atomic layer deposition technology. The combination of the YSZ nanofiber and the ultrathin TiO2 sensing layer (∼13 nm) endows the wearable sensor with tiny linear strains (0.55%) when subjected to a radius of curvature of 25 μm. As a result, the wearable inorganic YSZ/TiO2-A/R sensor can be folded multiple times without fracturing and maintain a stable electrical connectivity during cyclic bending. Furthermore, the utilization of photoactive TiO2 homojunctions allows the sensor to be activated by UV light and operated at room temperature. The efficient separation efficiency of photogenerated carriers, which stems from the interfacial electric field of TiO2 homojunctions, significantly enhances the sensor's response, leading to a low detection limit of 0.15 ppm for acetone. In addition, the wearable sensor was anchored on a mask and successfully utilized for the detection of a simulated breathing gas of diabetics; the real-time and stable response signals demonstrate its potential for noninvasive diabetes diagnosis. This study provides a valuable reference for the advancement of wearable room-temperature inorganic semiconductor gas sensors, offering valuable insights into their potential applications in disease diagnosis.
Collapse
Affiliation(s)
- Wanying Cheng
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chaohan Han
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yu Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Aoqun Xue
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Haipeng Dong
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinghua Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Changlu Shao
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
3
|
Sun Q, Duan P, Zhang W, Xie Y, Ni X, Zheng J. Floatable Cu 2(OH)PO 4/rGO Aerogel for Full Spectrum Driven Photocatalytic Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11087-11097. [PMID: 38718184 DOI: 10.1021/acs.langmuir.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Pengjun Duan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Wenqing Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Yuxuan Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Xiang Ni
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| |
Collapse
|
4
|
Yang J, Huang Q, Sun Y, An G, Li X, Mao J, Wei C, Yang B, Li D, Tao T, Yang H. Photocatalytic oxidation of formaldehyde under visible light using BiVO 4-TiO 2 synthesized via ultrasonic blending. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30085-30098. [PMID: 38598155 DOI: 10.1007/s11356-024-33192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Formaldehyde (HCHO) is one of the primary indoor air pollutants, and efficiently eliminating it, especially at low concentrations, remains challenging. In this study, BiVO4-TiO2 catalyst was developed using ultrasonic blending technology for the photocatalytic oxidation of low-level indoor HCHO. The crystal structure, surface morphology, element distribution, and active oxidation species of the catalyst were examined using XRD, SEM, TEM, UV-Vis, EDS, and ESR techniques. Our results demonstrated that the BiVO4-TiO2 catalyst, prepared by ultrasonic blending, exhibited good oxidation performance and stability. The HCHO concentration reduced from 1.050 to 0.030 mg/m3 within 48 h, achieving a removal rate of 97.1%. The synergy between BiVO4 and TiO2 enhanced the efficiency of separating photogenerated carriers and minimized the likelihood of recombination between photogenerated electrons and holes. Additionally, this synergy significantly enhanced the presence of hydroxyl radicals (·OH) on the catalyst, resulting in an oxidation performance superior to that of either BiVO4 or TiO2. Our research offers valuable insights for the development of new photocatalysts to address HCHO pollution.
Collapse
Affiliation(s)
- Jingyi Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yueyin Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guofang An
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Junjie Mao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chen Wei
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Dawei Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK
| |
Collapse
|
5
|
Lamprea-Pineda PA, Demeestere K, González-Cortés JJ, Boon N, Devlieghere F, Van Langenhove H, Walgraeve C. Addition of (bio)surfactants in the biofiltration of hydrophobic volatile organic compounds in air. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120132. [PMID: 38286067 DOI: 10.1016/j.jenvman.2024.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream. Experiments were carried out to select two (bio)surfactants (i.e., Tween 80 and saponin) out of five (sodium dodecyl sulfate (SDS), Tween 80, surfactin, rhamnolipid and saponin) from a physical-chemical (i.e., decreasing VOC gas-liquid partitioning) and biological (i.e., the ability of the microbial consortium to grow on the (bio)surfactants) point of view. The results show that adding Tween 80 at 1 critical micelle concentration (CMC) had a slight positive effect on the removal of both VOCs, in BF1 (e.g., 7.0 ± 0.6 g cyclohexane m-3 h-1, 85 ± 2% at 163 s; compared to 6.7 ± 0.4 g cyclohexane m-3 h-1, 76 ± 2% at 163 s and 0 CMC) and BF2 (e.g., 4.3 ± 0.4 g hexane m-3 h-1, 27 ± 2% at 82 s; compared to 3.1 ± 0.7 g hexane m-3 h-1, 16 ± 4% at 82 s and 0 CMC), but a negative effect in BF3 at either 1, 3 and 9 CMC (e.g., 2.4 ± 0.4 g hexane m-3 h-1, 30 ± 4% at 163 s and 1 CMC; compared to 4.6 ± 1.0 g hexane m-3 h-1, 43 ± 8% at 163 s and 0 CMC). In contrast, the performance of all BFs improved with the addition of saponin, particularly at 3 CMC. Notably, in BF3, the elimination capacity (EC) and removal efficiency (RE) doubled for both VOCs (i.e., 9.1 ± 0.6 g cyclohexane m-3 h-1, 49 ± 3%; 4.3 ± 0.3 g hexane m-3 h-1, 25 ± 3%) compared to no biosurfactant addition (i.e., 4.5 ± 0.4 g cyclohexane m-3 h-1, 23 ± 3%; hexane 2.2 ± 0.5 g m-3 h-1, 10 ± 2%) at 82 s. Moreover, the addition of the (bio)surfactants led to a shift in the microbial consortia, with a different response in BF1-BF2 compared to BF3. This study evaluates for the first time the use of saponin in BFs, it demonstrates that cyclohexane and hexane RE can be improved by (bio)surfactant addition, and it provides recommendations for future studies in this field.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea-Pineda
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - José Joaquín González-Cortés
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium; Department of Chemical Engineering and Food Technology, Vine and Agri-Food Research Institute (IVAGRO), University of Cadiz, Pol. Río San Pedro s/n, Puerto Real, 11510, Cadiz Spain.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Frank Devlieghere
- Research Group Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Herman Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Christophe Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| |
Collapse
|
6
|
Lv T, Wang R. Materials Enabling Methane and Toluene Gas Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:301. [PMID: 38255469 PMCID: PMC10820036 DOI: 10.3390/ma17020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
This paper summarizes the latest research results on materials for the treatment of methane, an important greenhouse gas, and toluene, a volatile organic compound gas, as well as the utilization of these resources over the past two years. These materials include adsorption materials, catalytic oxidation materials, hydrogen-reforming catalytic materials and non-oxidative coupling catalytic materials for methane, and adsorption materials, catalytic oxidation materials, chemical cycle reforming catalytic materials, and degradation catalytic materials for toluene. This paper provides a comprehensive review of these research results from a general point of view and provides an outlook on the treatment of these two gases and materials for resource utilization.
Collapse
Affiliation(s)
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Han D, Niu J, Yang Y, Huang C, Tan W, Zhang X. Au doped metal organic frameworks as di-functional photocatalysts for clearing organics in wastewater. CHEMOSPHERE 2024; 346:140665. [PMID: 37949188 DOI: 10.1016/j.chemosphere.2023.140665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Along with the development of productive forces, the use of organic compounds including diversified dyes and multiple drugs has become more and more commonly, resulting in the accelerating water contamination. Herein in this paper, Au doped PCN 224 are designed as bi-functional wastewater treatment agents to absorb and decompose organics molecules efficiently under light irradiation. After inserted with Au, the PCN 224 nanoparticles, which is kind of porous, stable and photosensitive metal-organic framework, show enhanced photodegradeability. Because the Au inserted could inhibit the re-combination of electrons and holes by absorbing photo-electrons; decrease the nanoparticles' band gap, and finally produce much more free radicals. In the meanwhile, due to the lower binding energy between S and Au, the Au modified PCN 224 perform better in absorbing organic compounds consisted of S contained heterocyclic ring (such as methylene blue). This work provides new insights into the precious design of materials in clearing organic compounds.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Juntao Niu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yuchen Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Chengjun Huang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Wenguang Tan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - XuanYi Zhang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| |
Collapse
|
8
|
Zhang X, Ma S, Gao B, Bi F, Liu Q, Zhao Q, Xu J, Lu G, Yang Y, Wu M. Effect of benzoic acid and dopamine hydrochloride as a modulator in the water resistance of Universitetet i Oslo-67: Adsorption performance and mechanism. J Colloid Interface Sci 2023; 651:424-435. [PMID: 37549527 DOI: 10.1016/j.jcis.2023.07.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The severe hazards on ecological environment and human body caused by volatile organic compounds (VOCs) have attracted worldwide substantial attention. In this research, a series of novel modified Universitetet i Oslo-67 (UiO-67) with water resistance were prepared and characterized, which had modified by benzoic acid and dopamine hydrochloride (67-ben-DH). On this basis, the adsorption performance, adsorption kinetics, defect engineering and water resistance of adsorbent were investigated. The results indicated that the excellent pore structure and specific surface area of 67-ben-DH-6 (molar ratio of Zr4+ to DH was 1:6) were retained while the adsorption performance and water resistance of the adsorbent were improved. Due to more defects, excellent adsorption diffusion and strong π-π interactions of 67-ben-DH-6, it performed the maximum adsorption capacity of toluene (793 mg g-1). Furthermore, the outstanding water resistance was attributed to the fact that N element of DH reduced the affinity of the adsorbent with water. Finally, the density functional theory (DFT) calculations showed that the adsorbent 67-ben-DH-6 had the maximum adsorption energy for toluene (-99.4 kJ mol-1) and the minimum adsorption energy for water (-17.8 kJ mol-1). Thus, the potential mechanism of 67-ben-DH for efficient toluene adsorption and water resistance was verified from a microscopic perspective.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China.
| | - Shuting Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bin Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qinhong Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qiangyu Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingcheng Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China
| | - Guang Lu
- Scholl of Civil Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, China
| | - Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
ÖZCAN E, MERMER Z, ZORLU Y. Metal-organic frameworks as photocatalysts in energetic and environmental applications. Turk J Chem 2023; 47:1018-1052. [PMID: 38173745 PMCID: PMC10760874 DOI: 10.55730/1300-0527.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) are an exciting new class of porous materials with great potential for photocatalytic applications in the environmental and energy sectors. MOFs provide significant advantages over more traditional materials when used as photocatalysts due to their high surface area, adaptable topologies, and functional ability. In this article, we summarize current developments in the use of MOFs as photocatalysts for a variety of applications, such as CO2 reduction, water splitting, pollutant degradation, and hydrogen production. We discuss the fundamental properties of MOFs that make them ideal for photocatalytic applications, as well as strategies for improving their performance. The opportunities and challenges presented by this rapidly expanding field are also highlighted.
Collapse
Affiliation(s)
- Elif ÖZCAN
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Zeliha MERMER
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Yunus ZORLU
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| |
Collapse
|
10
|
Kuspanov Z, Baglan B, Baimenov A, Issadykov A, Yeleuov M, Daulbayev C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163914. [PMID: 37149164 DOI: 10.1016/j.scitotenv.2023.163914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The growing environmental and energy crises have prompted researchers to seek new solutions, including large-scale photocatalytic environmental remediation and the production of solar hydrogen using photocatalytic materials. To achieve this goal, scientists have developed numerous photocatalysts with high efficiency and stability. However, the large-scale application of photocatalytic systems under real-world conditions is still limited. These limitations arise at every step, including the large-scale synthesis and deposition of photocatalyst particles on a solid support, and the development of an optimal design with high mass transfer and efficient photon absorption. The purpose of this article is to provide a detailed description of the primary challenges and potential solutions encountered in scaling up photocatalytic systems for use in large-scale water and air purification and solar hydrogen production. Additionally, based on a review of current pilot developments, we draw conclusions and make comparisons regarding the main operating parameters that affect performance, as well as propose strategies for future research.
Collapse
Affiliation(s)
- Zhengisbek Kuspanov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Bakbolat Baglan
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Alzhan Baimenov
- Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Aidos Issadykov
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Mukhtar Yeleuov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
| | - Chingis Daulbayev
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| |
Collapse
|
11
|
Enhanced Charge Separation and Transfer Capacity of Heterojunctions by Constructing Homojunctions for Visible Light Photocatalytic Degradation of Toluene. Catal Letters 2022. [DOI: 10.1007/s10562-022-04122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Miao B, Zhang Y, Chen Q, Zhang Y, Cao Y, Bai Z, Chen L. Highly Enhanced Photocatalytic Hydrogen Production Performance of Heterostructured Ti 3C 2/TiO 2/rGO Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15579-15591. [PMID: 36473723 DOI: 10.1021/acs.langmuir.2c02227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There has been a dire need for the exploration of renewable clean hydrogen energy recourses in recent years. In this work, we investigated the photocatalytic hydrogen production of heterostructured Ti3C2/TiO2/rGO composites. Ti3C2/TiO2/rGO heterojunction nanocomposites were synthesized using two-step calcination and hydrothermal methods, and the optimum in situ growth ratio of TiO2 of 71.8% (nTi-O/nTi) and rGO mass ratio (mRGO/mTiO2/mTi3C2) of 12% were obtained. The target photocatalyst presented an outperforming photocatalytic hydrogen production performance of 1671.85 μmol·g-1 hydrogen production capacity in 4 h, with the maximum hydrogen production rate of 808.11 μmol·g-1·h-1 in the first hour being 3.08 times the maximum hydrogen production rate of bare TiO2 (262.66 μmol·g-1·h-1). The excellent hydrogen production performance was due to the formed rutile TiO2 and the constructed heterojunction of Ti3C2/TiO2/rGO, where rGO provided different electron transport channels, and made charge transfer easier, and restrained the recombination efficiency of electrons and holes.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Qiuling Chen
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - YiFan Zhang
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Yange Cao
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Zhiming Bai
- Hefei Innovation Research Institute of Beihang University, Beijing, Anhui230012, China
| | - Lei Chen
- Hefei Innovation Research Institute of Beihang University, Beijing, Anhui230012, China
| |
Collapse
|
13
|
Garg A, Almáši M, Bednarčík J, Sharma R, Rao VS, Panchal P, Jain A, Sharma A. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. CHEMOSPHERE 2022; 305:135467. [PMID: 35764119 DOI: 10.1016/j.chemosphere.2022.135467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) represent a class of nanoporous materials built up by metal ions and organic linkers with several interesting potential applications. The present study described the synthesis and characterization of Gd(III)-based MOF with the chemical composition [Gd(BTC)(H2O)]·DMF (BTC - trimesate, DMF = N,N'-dimethylformamide), known as MOF-76(Gd) for hydrogen adsorption/desorption capacity and humidity sensing applications. The structure and morphology of as-synthesized material were studied using powder X-ray diffraction, scanning and transmission electron microscopy. The crystal structure of MOF-76(Gd) consists of gadolinium (III) and benzene-1,3,5-tricarboxylate ions, one coordinated aqua ligand and one crystallization DMF molecule. The polymeric framework of MOF-76(Gd) contains 1D sinusoidally shaped channels with sizes of 6.7 × 6.7 Å propagating along c crystallographic axis. The thermogravimetric analysis, heating infrared spectroscopy and in-situ heating powder X-ray diffraction experiments of the prepared framework exhibited thermal stability up to 550 °C. Nitrogen adsorption/desorption measurement at -196 °C showed a BET surface area of 605 m2 g-1 and pore volume of 0.24 cm3 g-1. The maximal hydrogen storage capacity of MOF-76(Gd) was 1.66 wt % and 1.34 wt % -196 °C and -186 °C and pressure up to 1 bar, respectively. Finally, the humidity sensing measurements (water adsorption experiments) were performed, and the results indicate that MOF-76(Gd) is a suitable material for moisture sensing application with a fast response (11 s) and recovery time (2 s) in the relative humidity range of 11-98%.
Collapse
Affiliation(s)
- Akash Garg
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic.
| | - Jozef Bednarčík
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice, 040 01, Slovak Republic
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Ankur Jain
- Department of Physics, School of Applied Science, Suresh Gyan Vihar University, Jaipur, 302017, India; Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, 302017, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
14
|
Yang Y, Li X, Jie B, Zheng Z, Li J, Zhu C, Wang S, Xu J, Zhang X. Electron structure modulation and bicarbonate surrounding enhance Fenton-like reactions performance of Co-Co PBA. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129372. [PMID: 35728314 DOI: 10.1016/j.jhazmat.2022.129372] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Although several strategies have been developed to improve the efficiency of heterogeneous Fenton-like reactions, investigating the relationship among the electronic properties of the catalyst surface, the complex water matrix and catalytic activity remains challenges. Herein, the electron density of the active site Co(II) in Co Prussian blue analogs (Co-PBAs) is proved to be modulated by the anion source method. The elevated electron density of Co(II) and the higher metallicity of the catalyst lead to an increase in electron transport efficiency as revealed by X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), and density functional theory (DFT) calculations. Furthermore, the negative shift of the D-band center of Co(II) can effectively release intermediates to avoid catalyst poisoning. Bicarbonate has been demonstrated to activate peroxymonosulfate (PMS) by weakening the peroxide bond. Its activation mechanism involves free radical mechanism and non-radical mechanism: the first step is the generation of HCO4-, then it is further hydrolyzed to generate •OH and 1O2, and the other is HCO4- interact with Co(III) to form Co(IV)=O. In addition, the degradation pathways of target contaminants p-nitrophenol and toxicity verification of intermediate products have been investigated. This study provides guidance for the research of Fenton-like reactions.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiding Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengfei Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shubin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
15
|
Paul R, Warkad IR, Arulkumar S, Parthiban S, Darji HR, Naushad M, Kadam RG, Gawande MB. Facile synthesis of nanostructured TiO2-SiO2 powder for selective photocatalytic oxidation of alcohols to carbonyl compounds. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Liu N, Dai W, Fei F, Xu H, Lei J, Quan G, Zheng Y, Zhang X, Tang L. Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B(Fe) for highly efficient degradation of ibuprofen: Combination of experimental and theoretical study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121545] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
ZnO@ZnS Core–shell Nanorods with Homologous Heterogeneous Interface to Enhance Photocatalytic Hydrogen Production. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yin Y, Liu Y, Xin Z, Xu G, Feng Y, Jiang B, He X, Zhang H, Ma J. A new type of composite catalyst AmCoPc/UiO-66-NH2 synergistic photocatalytic degradation of dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Angulo Ibáñez A, Luengo N, Aranzabe E, Beobide G, Castillo O, Goitandia AM, Pérez-Yáñez S, Perfecto-Irigaray M, Villamayor A. Low temperature curable titanium-based sols for visible light photocatalytic coatings for glass and polymeric substrates. NEW J CHEM 2022. [DOI: 10.1039/d2nj02173k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium oxide (TiO2) is a widely used material in photocatalytic coatings in which efficiency generally lies in the ultraviolet (UV) spectrum of light. Sol-gel method provides a simple and versatile...
Collapse
|
20
|
Zhu D, Huang Z, Wang H, Lu Q, Ruan G, Zhao C, Du F. Sustainable and reusable electrospun g-C3N5/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofibers for photocatalytic degradation of emerging pharmaceutical pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To fabricate sustainable and reusable photocatalyst materials is urgent and desirable for removal of emerging pharmaceutical pollutants (EPPs) in environment water samples. In this work, we described the fabrication of...
Collapse
|
21
|
Chen X, Bao H, Liu S, Liu X, Zhang C. Facile solvothermal assisted g-C 3N 4 post-grafting with aromatic amine dyes for effective photocatalytic hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj02812c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dye grafted g-C3N4 using covalent bonds via a Schiff base chemical reaction exhibit much higher photocatalytic activity for H2 evolution.
Collapse
Affiliation(s)
- Xiaodi Chen
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hailian Bao
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Shihang Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Xingliang Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Chao Zhang
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| |
Collapse
|