1
|
Xiao J, Zhang C, Yang L, Tang S, Tang W. Extraordinary synergy on 3D hierarchical porous Co-Cu nanocomposite for catalytic elimination of VOCs at low temperature and high space velocity. J Environ Sci (China) 2025; 151:714-732. [PMID: 39481976 DOI: 10.1016/j.jes.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 11/03/2024]
Abstract
It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity. Herein, a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants, which were further applied for catalytic removal of carcinogenic toluene. Among the catalysts with different ratios, the CoCu0.2 composite oxide presented the best performance, where the temperature required for 90% conversion of toluene was only 237°C at the high weight hour space velocity (WHSV) of 240,000 mL/(gcat·hr). Meanwhile, compared to the related Co-Cu composite oxides prepared by using different precipitants (NaOH and H2C2O4), the NH4HCO3-derived CoCu0.2 sample exhibited better catalytic efficiency in toluene oxidation, while the T90 were 22 and 28°C lower than those samples prepared by NaOH and H2C2O4 routes, respectively. Based on various characterizations, it could be deduced that the excellent performance was related to the small crystal size (6.7 nm), large specific surface area (77.0 m2/g), hollow hierarchical nanostructure with abundant high valence Co ions and adsorbed oxygen species. In situ DRIFTS further revealed that the possible reaction pathway for the toluene oxidation over CoCu0.2 catalyst followed the route of absorbed toluene → benzyl alcohol → benzaldehyde → benzoic acid → carbonate → CO2 and H2O. In addition, CoCu0.2 sample could keep stable with long-time operation and occur little inactivation under humid condition (5 vol.% water), which revealed that the NH4HCO3-derived CoCu0.2 nanocatalyst possessed great potential in industrial applications for VOCs abatement.
Collapse
Affiliation(s)
- Jinyan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Su S, Wang C, Duan H, Lv X, Chen J, Jia H. Unveiling the role of oxygen vacancy of manganese oxide coating on Ni foam to magnetocaloric catalytic oxidation of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136279. [PMID: 39471610 DOI: 10.1016/j.jhazmat.2024.136279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Using a pulsed-voltage technique, the manganese oxide (MnOx) coating on Ni foam (NF) was regulated to encourage magnetocaloric oxidation, which lowers volatile organic compounds (VOCs). The MnOx/NF was obtained by electrodeposition of MnOx onto NF. Subsequently, MnOx/NF-PV was obtained by pulsed-voltage modification. According to the structural characterization, the pulsed-voltage modification changed the interaction between the coating and the support, resulting in increased toluene adsorption capacity, oxygen desorption capability, oxygen vacancy (OV) quantity of MnOx/NF-PV. The MnOx/NF-PV exhibits excellent catalytic performance, with a 90 % conversion of toluene at 170 °C, where OV play an important role as electronic intermediates in magnetocaloric oxidation reactions. Furthermore, compared to traditional thermal catalysis, electromagnetic induction heating (EMIH) can promote the reactivity of OV in magnetocaloric catalysts by increasing the activation and dissociation of oxygen species and thus catalytic activity, which was demonstrated in the 18O isotope exchange experiment.
Collapse
Affiliation(s)
- Shuangyong Su
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunqi Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangyu Duan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Chen X, Liu S, Feng Y, Yang S, Yu H, Li H, Song Z, Liu W, Zhao M, Zhang X. Establishing efficient toluene elimination over cobalt-manganese bimetallic oxides via constructing strong Co-Mn interaction. CHEMOSPHERE 2024; 352:141346. [PMID: 38311035 DOI: 10.1016/j.chemosphere.2024.141346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Doping proves to be an efficacious method of establishing intermetallic interactions for enhancing toluene oxidation performance of bimetallic oxides. However, conventional bimetallic oxide catalysts are yet to overcome their inadequacy in establishing intermetallic interactions. In this work, the dispersion of Mn-Co bimetallic sites was improved by hydrolytic co-precipitation, strengthening the intermetallic interactions which improved the structural and physicochemical properties of the catalysts, thus significantly enhancing its catalytic behavior. MnCo-H catalysts fabricated by the hydrolytic co-precipitation method showed promising catalytic performance (T50 = 223 °C, T90 = 229 °C), robust stability (at least 100 h) and impressive water resistance (under 10 vol.% of water) for toluene elimination. Hydrolytic co-precipitation has been found to improve dispersion of MnCo elements and to enhance interaction between Co and Mn ions (Mn4+ + Co2+ = Mn3+ + Co3+), resulting in a lower reduction temperature (215 °C) and a weaker Mn-O bond strength, creating more lattice defects and oxygen vacancies, which are responsible for superior catalytic properties of MnCo-H samples. Furthermore, in situ DRIFTs showed that gaseous toluene molecules adsorbed on the surface of MnCo-H were continuously oxidized to benzyl alcohol → benzaldehyde → benzoate, followed by a ring-opening reaction with surface-activated oxygen to convert to maleic anhydride as the final intermediate, which further generates water and carbon dioxide. It was also revealed that the ring-opening reaction for the conversion of benzoic acid to maleic anhydride is the rate-controlling step. This study reveals that optimizing active sites and improving reactive oxygen species by altering the dispersion of bimetals to enhance bimetallic interactions is an effective strategy for the improvement of catalytic behavior, while the hydrolytic co-precipitation method fits well with this corollary.
Collapse
Affiliation(s)
- Xi Chen
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuchen Liu
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yang Feng
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuang Yang
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Huiqiong Yu
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Haiyang Li
- Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Zhongxian Song
- Faculty of Environmental and Municipal Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wei Liu
- Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Meichao Zhao
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Xuejun Zhang
- Shenyang University of Chemical Technology, Shenyang, 110142, China.
| |
Collapse
|
4
|
Hu W, Guo T, Ma K, Li X, Luo W, Wu M, Guo H, Zhang Y, Shangguan W. Promoted catalytic performance of Ag-Mn bimetal catalysts synthesized through reduction route. J Environ Sci (China) 2024; 137:358-369. [PMID: 37980022 DOI: 10.1016/j.jes.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
VOCs can exert great harm to both human and environment, and catalytic oxidation is believed to be an effective technique to eliminate these pollutants. In this paper, Ag-Mn bimetal catalysts with 10 wt.% of silver were synthesized using doping, impregnation, and reduction methods respectively, and then they were applied to the catalytic oxidation of benzene. Through series of characterizations it showed that the loading of silver using reduction method significantly resulted in improved physico-chemical properties of manganese oxides, such as larger surface area and pore volume, higher proportion of surface Mn3+ and Mn4+, stronger reducibility and more active of surface oxygen species, which were all beneficial to its catalytic activity. As a result, the Ag-Mn catalysts synthesized by reduction method showed a lower T90 value (equals to the temperature at which 90% of initial benzene was removed) of 203°C. Besides, both the used and fresh Ag-Mn catalysts synthesized by reduction method showed preferable stability in this research.
Collapse
Affiliation(s)
- Wenkai Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Tao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Kaiyao Ma
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Xu Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Wangting Luo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Mingzhi Wu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China; Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaxin Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China.
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Wang C, Chen J, Li Q, Su S, Jia H, He H. Unveiling the Position Effect of Ce within Layered MnO 2 to Prolong the Ambient Removal of Indoor HCHO. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4598-4607. [PMID: 36881634 DOI: 10.1021/acs.est.3c00420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The position of Ce doping has a significant effect on ambient HCHO storage and catalytic oxidation on layered MnO2. By associating structure and performance, it is unveiled that doping Ce into the in-layered lattice of MnO2 is favorable to the generation of high-valence Mn cations, enhancing the oxidizing ability and capacity, but an opposite influence is displayed by interlayered Ce doping. From the aspect of energy minimization calculated by DFT, in-layered Ce doping is also recommended due to the decreased energies for molecule adsorption and oxygen vacancy formation. As a result, in-layered Ce-doped MnO2 displays exceptional activity in catalyzing the deep oxidation of HCHO and a fourfold higher capacity of ambient HCHO storage than pristine MnO2. The optimal oxide is combined with electromagnetic induction heating to complete the "storage-oxidation" cycle as a promising approach absolutely depending on non-noble oxides and household appliances to realize the long-acting removal of indoor HCHO at room temperature.
Collapse
Affiliation(s)
- Chunqi Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangyong Su
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Highly efficient acetone oxidation over homogeneous Mn-Al oxides with enhanced OMS-2 active phase. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|