1
|
Xiao G, Ye Q, Zhong Z, Jin B. Numerical investigation on co-combustion of sludge and coal in a 660 MW pulverized coal boiler. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114814. [PMID: 40267751 DOI: 10.1016/j.wasman.2025.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
The co-combustion of sludge in coal-fired boilers, as a novel approach to sludge treatment, holds promising prospects for extensive application. The numerical simulation method is employed in this study to model the co-combustion of sludge in a 660 MW pulverized coal boiler at a power plant. By varying operational conditions, we thoroughly investigate the impact of sludge blending ratio, moisture content, and boiler load on combustion performance and pollutant emissions. The numerical investigation reveals that the impact on the boiler remains relatively insignificant when the blending ratio is below 10 %. However, surpassing a blending ratio of 10 % leads to a substantial reduction in temperature. Specifically, at a blending ratio of 20 %, there is an average temperature decrease of 9.3 K observed across each sections of the boiler. Moreover, as the blending ratio increases, there is a concurrent decline in SO2 and NOx levels, while CO exhibits an upward trend. Increasing the moisture content will result in a reduction in boiler temperature. In comparison to sludge with a 25 % moisture content, blending sludge with a 45 % moisture content will cause an average temperature decrease of approximately 10 K within the boiler. Augmenting the moisture content will diminish the concentrations of SO2 and NOx, while concurrently leading to an elevation in CO concentration (up to a maximum of 107.4 mg/Nm3). The internal temperature and outlet pollutant concentrations both escalate as the boiler load increases. Based on this study, the optimal sludge blending ratio is determined to be 10 %, accompanied by a moisture content of 35 %.
Collapse
Affiliation(s)
- Guozhen Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Qihang Ye
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China.
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Baosheng Jin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Feng W, Ye Y, Xiang Y, Peng S, He S, Peng H, Zhang Z, Yang Z, Xiong W. Unraveling the dual role in enhancing methane production and mitigating antibiotic resistance gene spread in anaerobic co-digestion of microalgae and waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138606. [PMID: 40381349 DOI: 10.1016/j.jhazmat.2025.138606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/07/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Waste activated sludge (WAS) is a double-edged sword - a recognized repository for antibiotic resistance genes (ARGs) but also a renewable substrate for methane production. Developing effective WAS treatment strategies is therefore of both ecological and practical importance. In this study, we proposed an anaerobic co-digestion approach of WAS and microalgae Chlorella sp. at a 1:2 ratio (MAcoD-1:2). Results showed that MAcoD-1:2 notably increased cumulative methane production by 52.7 %. Co-digestion also demonstrated a significant increase in the abundance of hydrolyzing acidifying bacteria Candidatus_Promineofilum (12.25 %) and methanogenic archaea Methanothrix (61.2 %). This microbial shift suggested that cosubstrates availability fostered a stable bacterial community structure and synergistic metabolic interactions, thus enhancing methane production. Metagenomic analysis revealed a significant reduction in both ARGs and mobile genetic elements in MAcoD-1:2. Notably, substrate level regulation was found to drive restructuring of microbial communities and metabolic patterns. Investigation showed that the Embden-Meyerhof-Parnas pathways were significantly inhibited while the pentose phosphate pathway was promoted, which constrained the cellular energy budget available for ARG horizontal transfer. Partial least squares path modelling (PLS-PM) further substantiated these findings, revealing methane metabolism negatively affected ARGs (-4.52), whereas confirming its positive correlation with methane production (0.22). Our findings provided distinctive perspectives on WAS resource utilization and novel technologies to inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Wenyi Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shudian Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- School of Chemistry and Chemical Engineering / Institute of Clean Energy and Materials / Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, PR China
| | - Zhenfeng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
3
|
Pasalari H, Gharibi H, Darvishali S, Farzadkia M. The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:439-453. [PMID: 39464814 PMCID: PMC11499478 DOI: 10.1007/s40201-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/23/2024] [Indexed: 10/29/2024]
Abstract
Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. Firmicutes and Bacteroidetes phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00917-x.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| | - Hamed Gharibi
- Health Sciences Research Institute, University of California, Merced, USA
| | - Siamak Darvishali
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| |
Collapse
|
4
|
Rocha ME, Mangiavacchi N, Marques M, Teixeira L. Succession from acetoclastic to hydrogenotrophic microbial community during sewage sludge anaerobic digestion for bioenergy production. Biotechnol Lett 2024; 46:997-1011. [PMID: 39261355 DOI: 10.1007/s10529-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.
Collapse
Affiliation(s)
- Mariana Erthal Rocha
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Norberto Mangiavacchi
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lia Teixeira
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Qu Y, Miao X, Chen S, Qin N, Li J, Che Y, Luo L, Sun Y. Novel insights into the mechanism of dynamic changes in microstructure and physicochemical properties of corn straw pretreated by ball milling and feasibility analysis of anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173943. [PMID: 38880129 DOI: 10.1016/j.scitotenv.2024.173943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
In this study, the effects of Ball milling (BM) pretreatment (0-240 min) on the microstructure, physicochemical properties and subsequent methanogenesis performance of corn straw (CS) were explored, and the feasibility analysis was carried out. The results showed that BM pretreatment destroyed the dense structure of the CS, and the particle size was significantly reduced (D50: 13.85 μm), transforming it into a cell-scale granular form. The number of mesopores increased, the pore volume (PV) (0.032 cm3/g) and specific surface area (SSA) (4.738 m2/g) considerably increased, and the water-absorbent property was improved. The crystalline order of cellulose was disrupted and the crystallinity (CrI) (8.61 %) and crystal size (CrS) (3.37) were remarkably reduced. The cross-links between lignocelluloses were broken, and the relative content and functional groups did not alter obviously. The bulk density (BD), repose angle (RA) and slip angle (SA) dramatically increased. As a result, CS was more readily accessible, attached and utilized by microorganisms and enzymes, causing the hydrolysis and acidification of AD to be greatly facilitated. Compared with the untreated group, the cumulative methane production (CMP) increased by 35.83 %-101.97 %, and the lag phase time (λ) was shortened by 33.04 %-71.17 %. The results of redundancy analysis, Pearson analysis and Mantel test showed that BM pretreatment affects the process of AD by changing the physicochemical factors of CS. The normalization analysis showed that particle size (D90) and BD can be used as direct indicators to evaluate the performance of AD and predict the threshold of biodegradation of CS. Energy analysis and energy conversion assessment showed that BM is a green and efficient AD pretreatment strategy. This result provides a theoretical basis for the industrial application of BM pretreatment towards more energy-efficient and sustainable development.
Collapse
Affiliation(s)
- Youpei Qu
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Xinying Miao
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Shaopeng Chen
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Nan Qin
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Jiangnan Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Yuchen Che
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Lina Luo
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China.
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China.
| |
Collapse
|
6
|
Huang T, Li D, Chen B, Wu B, Chai X. Utilization strategy for algal bloom waste through co-digestion with kitchen waste: Comprehensive kinetic and metagenomic analysis. ENVIRONMENTAL RESEARCH 2024; 255:119194. [PMID: 38777294 DOI: 10.1016/j.envres.2024.119194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Anaerobic co-digestion (AcoD) with kitchen waste (KW) is an alternative utilization strategy for algal bloom waste (AW). However, the kinetic characteristic and metabolic pathway during this process need to be explored further. This study conducted a comprehensive kinetic and metagenomic analysis for AcoD of AW and KW. A maximum co-digestion performance index (CPI) of 1.13 was achieved under the 12% AW addition. Co-digestion improved the total volatile fatty acids generation and the organic matter transformation efficiency. Kinetic analysis showed that the Superimposed model fit optimally (R2Adj = 0.9988-0.9995). The improvement of the kinetic process by co-digestion was mainly reflected in the increase of the methane production from slowly biodegradable components. Co-digestion enriched the cellulolytic bacterium Clostridium and the hydrogenotrophic methanogenic archaea Methanobacterium. Furthermore, for metagenome analysis, the abundance of key genes concerned in cellulose and lipid hydrolysis, pyruvate and methane metabolism were both increased in co-digestion process. This study provided a feasible process for the utilization of AW produced seasonally and a deeper understanding of the AcoD synergistic mechanism from kinetic and metagenomic perspectives.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dong Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Chen B, Azman S, Crauwels S, Dewil R, Appels L. Mild alkaline conditions affect digester performance and community dynamics during long-term exposure. BIORESOURCE TECHNOLOGY 2024; 406:131009. [PMID: 38909869 DOI: 10.1016/j.biortech.2024.131009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
This paper examines the adaptive responses of microbial communities to gradual shifts in pH toward the mild alkaline range in anaerobic digestion (AD) systems. The results indicate that a pH of 8.0 serves as a critical upper limit for stable AD operation, beyond which microbial efficiency declines, underscoring the importance of microbial resilience against elevated pH stress. Specifically, hydrolysis genera, e.g. Eubacterium and Anaerobacterium, and syntrophic bacteria were crucial for reactor stability. Fibrobacter had also been shown to play a key role in the accumulation of propionate, thus leading to its dominance in the volatile fatty acid profile throughout the experimental phases. Overall, this investigation revealed the potential adaptability of microbial communities in AD systems to mild alkaline pH shifts, emphasizing the hydrolysis bacteria and syntrophic bacteria as key factors for maintaining metabolic function in elevated pH conditions.
Collapse
Affiliation(s)
- Boyang Chen
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Samet Azman
- Avans University of Applied Sciences, Academy of Life Sciences and Technology, Lovensdijk 61, 4818 AJ Breda, Netherlands
| | - Sam Crauwels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Centre of Microbial and Plant Genetics, Willem de Croylaan 46, 3001 Leuven, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
8
|
Yu Y, Yu Z, Xu W, Zhang K, Tang Y, Cheng G, He X, Dai B. High-Temperature Ash Melting and Fluidity Behavior upon the Cocombustion of Sewage Sludge and Coal. ACS OMEGA 2024; 9:14455-14464. [PMID: 38559938 PMCID: PMC10975663 DOI: 10.1021/acsomega.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Wastewater treatment produces a large amount of sludge, where the minimizing of the disposed sludge is essential for environmental protection. The co-combustion of sludge with coal is a preferable method for sewage sludge disposal from the economic and environmental perspective. The co-combustion of sludge has been widely used in the industry with the advantages of large processing capacity. The melting characteristics of ash are an important criterion for the selection of the co-combustion methods and furnace types. In this study, two types of sludge and four types of coal with different ash melting points were selected, where the ash melting behavior upon co-combustion is investigated by experimental and thermodynamical approaches. Especially, the slag fluidity upon co-combustion is explored via a modified inclined plane method. It has been found that the presence of SiO2 and CaO in sludge substantially enhances its fusion temperature owing to the high content of CaO, while SiO2 acts as a solvent, facilitating the co-melting of other oxides and raising the sludge fusion temperature. Fe2O3 exhibits a specific mass fraction within the range of 10-20%. Furthermore, the presence of CaO and SiO2 prohibits the flow ability of the slag at high temperatures, and Fe2O3 promotes the flow ability for sludge at high temperatures. With increasing base/acid ratio, the sludge flow velocity increases remarkably and peaks at 1.6. The interaction between Fe-Ca and Si-AI significantly affects the fluidity significantly. The findings are expected to optimize the condition of co-combustion and desirable furnace design for the incineration of sludge.
Collapse
Affiliation(s)
- Yunpeng Yu
- Department
of Chemical&Biological Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Monash
Suzhou Research Institute, SIP,Suzhou, Jiangsu 215028, China
| | - Zhiao Yu
- School
of Software Engineering, Southeast University, Suzhou 215723, China
| | - Wei Xu
- General
Water of China Co., Ltd., Beijing 100022, China
| | - Kaibing Zhang
- Department
of Chemical Engineering, Southeast-Monash
Joint Graduate School, SIP,Suzhou 215123, China
| | - Yuneng Tang
- Department
of Chemical&Biological Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Monash
Suzhou Research Institute, SIP,Suzhou, Jiangsu 215028, China
| | - Guojian Cheng
- JITRI Institute
for Process Modeling and Optimization, Suzhou 215123, China
| | - Xiang He
- University
of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai
Power Equipment Research Institute Co.,Ltd., Shanghai 200240, China
| | - Baiqian Dai
- Department
of Chemical&Biological Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Monash
Suzhou Research Institute, SIP,Suzhou, Jiangsu 215028, China
| |
Collapse
|
9
|
Wang T, Wang J, Pu J, Bai C, Peng C, Shi H, Wu R, Xu Z, Zhang Y, Luo D, Yang L, Zhang Q. Comparison of Thermophilic-Mesophilic and Mesophilic-Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms 2023; 11:2409. [PMID: 37894067 PMCID: PMC10608829 DOI: 10.3390/microorganisms11102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated the performance of thermophilic-mesophilic (T-M) and mesophilic-thermophilic (M-T) two-phase sludge anaerobic digestion at different inoculation proportions after a change in digestion temperature. After temperature change, the pH, total ammonia nitrogen (TAN), free ammonia nitrogen (FAN), solubility chemical oxygen demand (SCOD), and total alkalinity (TA) levels of two-phase digesters were between thermophilic control digesters and mesophilic control digesters. However, the volatile fatty acid (VFA) levels of two-phase digesters were higher than those of thermophilic or mesophilic control digesters. The bacteria communities of M-T two-phase digesters were more diverse than those of T-M. After a change in digestion temperature, the bacterial community was dominated by Coprothermobacter. After a change of digestion temperature, the relative abundance (RA) of Methanobacterium, Methanosaeta, and Methanospirillum of M-T two-phase digesters was higher than that of T-M two-phase digesters. In comparison, the RA of Methanosarcina of T-M two-phase digesters was higher than that of M-T two-phase digesters. The ultimate methane yields of thermophilic control digesters were greater than those of mesophilic control digesters. Nevertheless, the ultimate methane yield levels of M-T two-phase digesters were greater than those of T-M two-phase digesters. The ultimate methane yields of all two-phase digesters presented an earlier increase and later decrease trend with the increasing inoculation proportion. Optimal methane production condition was achieved when 15% of sludge (T-M15) was inoculated under mesophilic-thermophilic conditions, which promoted 123.6% (based on mesophilic control) or 27.4% (based on thermophilic control). An optimal inoculation proportion (about 15%) balanced the number and activity of methanogens of high-solid sludge anaerobic digestion.
Collapse
Affiliation(s)
- Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.W.); (J.P.); (C.B.); (C.P.); (H.S.); (R.W.); (Z.X.); (Y.Z.); (D.L.); (L.Y.); (Q.Z.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Microbial Behavior and Influencing Factors in the Anaerobic Digestion of Distiller: A Comprehensive Review. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Anaerobic digestion technology is regarded as the most ideal technology for the treatment of a distiller in terms of environmental protection, resource utilization, and cost. However, there are some limitations to this process, the most prominent of which is microbial activity. The purpose of this paper is to provide a critical review of the microorganisms involved in the anaerobic digestion process of a distiller, with emphasis on the archaea community. The effects of operating parameters on microbial activity and process, such as pH, temperature, TAN, etc., are discussed. By understanding the activity of microorganisms, the anaerobic treatment technology of a distiller can be more mature. Aiming at the problem that anaerobic treatment of a distiller alone is not effective, the synergistic effect of different substrates is briefly discussed. In addition, the recent literature on the use of microorganisms to purify a distiller was collected in order to better purify the distiller and reduce harm. In the future, more studies are needed to elucidate the interactions between microorganisms and establish the mechanisms of microbial interactions in different environments.
Collapse
|