1
|
Tang Q, Wu B, Huang X, Ren W, Liu L, Tian L, Chen Y, Zhang LS, Sun Q, Kang Z, Ma T, Zou JP. Electron transfer mediated activation of periodate by contaminants to generate 1O 2 by charge-confined single-atom catalyst. Nat Commun 2024; 15:9549. [PMID: 39500863 PMCID: PMC11538331 DOI: 10.1038/s41467-024-53941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-N3S1 configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate 1O2. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and 1O2. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate 1O2. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of 1O2 avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP's electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.
Collapse
Affiliation(s)
- Qianqian Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Bangxiang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Xiaowen Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Lingling Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Ying Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Long-Shuai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Zhibing Kang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
| |
Collapse
|
2
|
Wang K, Li H, Qin X, Ma T, Zhu L, Zhang C, Yu W, Zhou X. Theory-guided unraveling of the mechanism underlying Cu 1.0/Mn 1.0-ZnO with dual reaction centers for enhanced peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2024; 247:118258. [PMID: 38262512 DOI: 10.1016/j.envres.2024.118258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Developing efficient catalytic systems for water contamination removal is a topic of great interest. However, the use of heterogeneous catalysts faces challenges due to insufficient active sites and electron cycling. In this study, results from first-principles calculations demonstrate that dual reaction centers (DRCs) are produced around the Cu and Mn sites in Cu1.0/Mn1.0-ZnO due to the electronegativity difference. Experimental results reveal the material with DRCs greatly enhances electron transfer efficiency and significantly impacts the oxidation and reduction of peroxymonosulfate (PMS). In addition, the self-consistent potential correction (SCPC) method was introduced to correct the energy and charge of charged periodic systems simulating a catalytic process, resulting in more precise catalytic results. Specifically, the material exhibits a preference for adsorbing negatively charged PMS anions at electron-deficient Mn sites, facilitating PMS oxidation for the generation of 1O2, and PMS reduction around the electron-rich Cu for the formation of •OH and SO4•-. The major reactive oxygen species is 1O2, showcasing effective performance in various degradation systems. Overall, our work provides novel insights into the persulfate-based heterogeneous catalytic oxidation process, paving the way for the development of high-performance catalytic systems for water purification.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiaofei Qin
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lin Zhu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xulun Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|