1
|
Wan H, Wang K, Luo X, Zhang C, Deng K, Lin S, Xie J, Luo Q, Lei X, Ding L. Algal-mediated nitrogen removal and sustainability of algal-derived dissolved organic matter supporting denitrification. BIORESOURCE TECHNOLOGY 2024; 407:131083. [PMID: 38972430 DOI: 10.1016/j.biortech.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Algae-mediated nitrogen removal from low carbon vs. nitrogen (C/N) wastewater techniques has garnered significant attention due to its superior autotrophic assimilation properties. This study investigated the ammonium-N removal potential of four algae species from low C/N synthetic wastewater. Results showed that 95 % and 99 % of ammonium-N are eliminated at initial concentrations of 11.05 ± 0.98 mg/L and 42.51 ± 2.20 mg/L with little nitrate and nitrite accumulation. The compositions of secreted algal-derived dissolved organic matter varied as C/N decreased and showed better bioavailability for nitrate-N removal by Pseudomonas sp. SZF15 without pre-oxidation, achieving an efficiency of 99 %. High-throughput sequencing revealed that the aquatic microbial communities, dominated by Scenedesmus, Kalenjinia, and Micractinium, remain relatively stable across different C/N, aligning with the underlying metabolic pathways. These findings may provide valuable insights into the sustainable elimination of multiple nitrogen contaminants from low C/N wastewater.
Collapse
Affiliation(s)
- Huiqin Wan
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kangpeng Wang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Chao Zhang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kai Deng
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shusen Lin
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingming Xie
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qi Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xu Lei
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
2
|
Chang M, Zhu T, Xiao T, Wang J, Wang N, Song Y, Wang Y. Novel process for organic wastewater treatment using aerobic composting technology: Shifting from pollutant removal towards resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169522. [PMID: 38141992 DOI: 10.1016/j.scitotenv.2023.169522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In this study, an organic wastewater treatment process based on aerobic composting technology was developed in order to explore the transition of wastewater treatment from pollutants removal to resource recovery. The novelty of the process focuses towards the microbial metabolic heat that is often ignored during the composting, and taking advantage of this heat for wastewater evaporation to achieve zero-discharge treatment. Meanwhile, this process can retain the wastewater's nutrients in the composting substrate to realize the recovery of resources. This study determined the optimum condition for the process (initial water content of 50 %, C/N ratio of 25:1, ventilation rate of 3 m3/h), and 69.9 % of the total heat generated by composting was used for wastewater treatment under the condition. The HA/FA ratio of composting substrate increased from 0.07 to 0.53 after wastewater treatment, and the retention ratio of TOC and TN was 52.3 % and 61.7 %, respectively, which proved the high recycling value of the composting products. Thermoduric and thermophilic bacteria accounted for 44.3 % of the community structure at the maturation stage, which played a pivotal role in both pollutant removal and resource recovery.
Collapse
Affiliation(s)
- Mingdong Chang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China; DongYuan Environment S&T, 400-19 Zhihui 2 Road, Shenyang 110004, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Song
- Liaoning Coning Testing Co. Ltd., No. 603, 16-6 Wensu Street, Shenyang, 110170, China
| | - Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China.
| |
Collapse
|
3
|
Wang D, Mai L, Yu Z, Wang K, Meng Z, Wang X, Li Q, Lin J, Wu D. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level. BIORESOURCE TECHNOLOGY 2024; 391:129947. [PMID: 37914056 DOI: 10.1016/j.biortech.2023.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Studies on compost dissolved organic matter (DOM) previously focus on its composition and humification, without considering DOM bioavailability to understand compost fertility. To decipher the fertility basis of compost, DOM bioavailability in thermophilic compost (TC) and vermicompost (VC) was investigated and linked with its molecular composition. Results showed that DOM bioavailability of VC (36 % BDOC) was generally higher than that of TC (22 % BDOC) due to containing more tannin-like substances. Inversely, only lipid-/carbohydrate-/protein-like substances contributed to DOM bioavailability in TC. Moreover, these differences of bioavailability expanded with C/N decreased in composting materials. Specifically, the %BDOC of VC with N-rich materials (C/N < 25) was 2.1-3.0 times higher than that in TC, while it was only 1.2-1.4 times for C-rich materials (C/N < 25), because N-surplus facilitated the formation of O-/N-containing aromatics (e.g., CHON and tannin) in VC, but inhibited the decomposition of organic materials into small bioactive molecules in TC.
Collapse
Affiliation(s)
- Dingmei Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Liwen Mai
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kongtan Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Institute of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Xiongfei Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Jiacong Lin
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| |
Collapse
|
4
|
Wang Y, Ge Y, Deng Y, Xu X, Zhang Y, Li L, Xu Z. DOM hydrophilic components of organic fertilizers increased the soil nitrogen retention capacity and succession of the microbial community. Front Microbiol 2023; 14:1320302. [PMID: 38125572 PMCID: PMC10730659 DOI: 10.3389/fmicb.2023.1320302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Application of organic fertilizers affects soil properties and microbial communities, which in turn alters soil N transformation processes. Unfortunately, it is not clear how the difference in the character of the organic fertilizer DOM affects the soil nitrogen retention capacity and its microbial processes. Methods According to the principle of equal nutrients, the treatments of chemical fertilizer alone (treatment CF), chemical fertilizer with organic fertilizer DOM hydrophilic components (treatment H), and chemical fertilizer with organic fertilizer DOM hydrophobic components (treatment P) were set up, where the characteristics of soil nitrogen transformation and changes in microbial community structure were studied with soil culture conditions for 24 days. Results It was discovered that the addition of organic fertilizer DOM components (H and P) slowed nitrification rate and increased protease activity resulting in a higher NH4+-N content compared to the CF treatment. The DOM addition (H and P) increased the microbial biomass nitrogen (MBN) levels in the soil and increased the soil nitrogen pool capacity. Conclusions Moreover, the carbon use efficiency of the hydrophilic components is higher than that of the hydrophobic components, resulting in its further increase in nitrogen reservoir capacity and higher nitrogen retention capacity. Network analysis showed that the addition of organic fertilizer DOM hydrophilic components increased network complexity and synergy between microorganisms. In combination with random forest analysis, it was shown that Sphingomonas and Massilia were key species influencing soil nitrogen retention capacity and nitrogen availability characteristics.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Yingtong Ge
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Yaqin Deng
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Xiang Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Yong Zhang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Lan Li
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Vegetable Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Ma X, Li S, Pan R, Wang Z, Li J, Zhang X, Azeem M, Yao Y, Xu Z, Pan J, Zhang Z, Li R. Effect of biochar on the mitigation of organic volatile fatty acid emission during aerobic biostabilization of biosolids and the underlying mechanism. JOURNAL OF CLEANER PRODUCTION 2023; 390:136213. [DOI: 10.1016/j.jclepro.2023.136213] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
6
|
Zhang B, Zhou X, Ren X, Hu X, Ji B. Recent Research on Municipal Sludge as Soil Fertilizer in China: a Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:119. [PMID: 36776548 PMCID: PMC9906581 DOI: 10.1007/s11270-023-06142-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Due to the annual increase in wastewater treatment in most Chinese cities, a major environmental issue has arisen: safe treatment, disposal, and recycling of municipal sludge. Municipal sludge has a high content of carbon and essential nutrients for plant growth; hence, it has gained interest among researchers as a soil fertilizer. This study discusses the potential usage of municipal sludge as soil fertilizer (indicators include nitrogen (N), phosphorus (P), and trace elements) along with its shortcomings and drawbacks (potentially toxic elements (PTEs), organic matter (OM), pathogens, etc.) as well as reviews the latest reports on the role of municipal sludge in land use. The use of municipal sludge as a soil fertilizer is a sustainable management practice and a single application of sludge does not harm the environment. However, repeated use of sludge may result in the accumulation of harmful chemicals and pathogens that can enter the food chain and endanger human health. Therefore, long-term field studies are needed to develop ways to eliminate these adverse effects and make municipal sludge available for agricultural use.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xingxing Zhou
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan, 753000 People’s Republic of China
| | - Xupicheng Ren
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xiaomin Hu
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Borui Ji
- Liaoning Inspection, Examination & Certification Centre, Liaoning Province Product Quality Supervision and Inspection Institute, Shenyang, 110014 People’s Republic of China
- National Quality Supervision & Testing Center of Petroleum Products, Shenyang, 110014 People’s Republic of China
| |
Collapse
|